En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11P82 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Feynman Checkers: Number theory methods in quantum theory - Ustinov, Alexey (Auteur de la Conférence) ; Skopenkov, Mikhail (Auteur de la Conférence) | CIRM H

Virtualconference

In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the model reproduces the usual quantum-mechanical free-particle kernel for large time, small average velocity, and small lattice step. We compute the small-lattice-step and the large-time limits, justifying heuristic derivations by J. Narlikar from 1972 and by A.Ambainis et al. from 2001. The main tools are the Fourier transform and the stationary phase method.
A more detailed description of the model can be found in Skopenkov M.& Ustinov A. Feynman checkers: towards algorithmic quantum theory. (2020) https://arxiv.org/abs/2007.12879[-]
In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the ...[+]

82B20 ; 11L03 ; 68Q12 ; 81P68 ; 81T25 ; 81T40 ; 05A17 ; 11P82 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is non-trivial; the proof relies on power savings estimates for weighted sums of generalized Kloosterman sums which follow from spectral methods.[-]
We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is ...[+]

11F37 ; 11P82

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Automorphic forms and classical partition identities - Mahlburg, Karl (Auteur de la Conférence) | CIRM H

Multi angle

I will discuss recent progress in the analytic study of classical partition identities, including the famous « sum-product » formulas of Rogers-Ramanujan, Schur, and Capparelli. Such identities are rich in automorphic objects such as Jacobi theta functions, mock theta functions, and false theta functions. Furthermore, there are interesting connections to the combinatorics of multi-colored partitions, and the calculation of standard modules for Lie algebras and vertex operator theory.[-]
I will discuss recent progress in the analytic study of classical partition identities, including the famous « sum-product » formulas of Rogers-Ramanujan, Schur, and Capparelli. Such identities are rich in automorphic objects such as Jacobi theta functions, mock theta functions, and false theta functions. Furthermore, there are interesting connections to the combinatorics of multi-colored partitions, and the calculation of standard modules for ...[+]

11Pxx ; 11P81 ; 11P82 ; 11P84

Sélection Signaler une erreur