En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Keating, Jonathan P. 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error