En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 18N40 5 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a nilpotent Lie algebra over a characteristic zero field, one can construct a group in a universal way via the Baker-Campbell-Hausdorff formula. This integration procedure admits generalizations to dg Lie or L∞-algebras, giving in general ∞-groupoid of deformations that it encodes, as by the Lurie-Pridham correspondence, infinitesimal deformation problems are equivalent to dg Lie algebras. The recent work of Brantner-Mathew establishes a correspondence between infinitesimal deformation problems and partition Lie algebras over a positive characteristic field. In this talk, I will explain how to construct an analogue of the integration functor for certain point-set models of (spectral) partition Lie algebras, and how this integration functor can recover the associated deformation problem under some assumptions. Furthermore, I will discuss some applications of these constructions to unstable p-adic homotopy theory.[-]
Given a nilpotent Lie algebra over a characteristic zero field, one can construct a group in a universal way via the Baker-Campbell-Hausdorff formula. This integration procedure admits generalizations to dg Lie or L∞-algebras, giving in general ∞-groupoid of deformations that it encodes, as by the Lurie-Pridham correspondence, infinitesimal deformation problems are equivalent to dg Lie algebras. The recent work of Brantner-Mathew establishes a ...[+]

18M70 ; 18N40 ; 22E60 ; 55P62 ; 55U10 ; 14D15 ; 14D23

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How algebraic is a stable model category? - Roitzheim, Constanze (Author of the conference) | CIRM H

Multi angle

There are many different notions of 'being algebraic' used in stable homotopy theory. The relationships between those turn out to be unexpectedly subtle. We will explain the different ways in which a model category of interest can be algebraic, explore the different implications between them and illustrate those with plenty of examples. This is joint work with Jocelyne Ishak and Jordan Williamson.

18N40 ; 55P42

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error