En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Pereira, Jorge Vitório 37 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will report on a work in progress with Federico Lo Bianco, Erwan Rousseau, and Frédéric Touzet about the structure of codimension one foliations having an infinite group of birational symmetries.

37F75 ; 32S65 ; 14E05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A splitting theorem - Druel, Stéphane (Author of the conference) | CIRM H

Virtualconference

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Holonomy of singular Ricci-flat metrics - Guenancia, Henri (Author of the conference) | CIRM H

Virtualconference

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The decomposition theorem: the smooth case - Beauville, Arnaud (Author of the conference) | CIRM H

Virtualconference

The decomposition theorem gives some insight on the structure of compact Kähler manifolds with trivial first Chern class. In the first part of the talk I will try to summarize the history of the problem, from the Calabi conjecture to its proof by Yau; in the second part I will explain why the result is an easy consequence of Yau's theorem.

14J32 ; 53C26

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​The purpose of the discussion session is to discuss how the proof of the decomposition theorem came to be

14-06

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Holomorphic Poisson structures - lecture 1 - Pym, Brent (Author of the conference) | CIRM H

Virtualconference

The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.

I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...[+]

53D17 ; 37F75 ; 14J10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Holomorphic Poisson structures - lecture 2 - Pym, Brent (Author of the conference) | CIRM H

Virtualconference

The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.

I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...[+]

37F75 ; 53D17 ; 14J10

Bookmarks Report an error