En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 18N60 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Exact $\infty$-categories - Jasso, Gustavo (Author of the conference) | CIRM H

Multi angle

Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact infinity-categories, relying on the newly-developed theory of infinity-categories developed by Joyal, Lurie and others. This new class of mathematical objects includes not only the exact categories in the sense of Quillen but also the stable inftinty-categories in the sense of Lurie (the latter are to be regarded as refinements of triangulated categories in the sense of Verdier). The purpose of this lecture series is to motivate the theory of exact infinity-categories and sketch some of its applications. Familiarity with the theory of infinity-categories is not expected.[-]
Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact ...[+]

18N60 ; 16G20 ; 18E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ∞-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.[-]
Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series of talks will attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with ...[+]

03B38 ; 18N40 ; 18N50 ; 18N60

Bookmarks Report an error