En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11E08 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hasse proved that for quadrics the existence of rational points reduces to the existence of solutions over local fields. In many cases, cohomological constructions provide obstructions to such a local to global principle. The objective of these lectures is to give an introduction to these cohomological tools.

20G10 ; 11E08 ; 11E72

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Hasse-Weil zeta function of a regular proper flat scheme over the integers is expected to extend meromorphically to the whole complex plane and satisfy a functional equation. The local epsilon factors of vanishing cycles are the local factors of the constant term in the functional equation. For their absolute values, Bloch proposed a conjecture, called Bloch's conductor formula, which describes them in terms of the Euler characteristics of a certain (complex of) coherent sheaf. In this talk, under the assumption that the non-smooth locus is isolated and that the residue characteristic is odd, I explain that the coherent sheaf appearing in the Bloch's conjecture is naturally endowed with a quadratic form and I would like to propose a conjecture that describes the local epsilon factors themselves in terms of the quadratic form. The conjecture holds true in the following cases: 1) for non-degenerate quadratic singularities, 2) for finite extensions of local fields, or 3) in the positive characteristic case.[-]
The Hasse-Weil zeta function of a regular proper flat scheme over the integers is expected to extend meromorphically to the whole complex plane and satisfy a functional equation. The local epsilon factors of vanishing cycles are the local factors of the constant term in the functional equation. For their absolute values, Bloch proposed a conjecture, called Bloch's conductor formula, which describes them in terms of the Euler characteristics of a ...[+]

11E08 ; 14B05 ; 11G25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A Hasse principle over Berkovich analytic curves - Mehmeti, Vlerë (Auteur de la conférence) | CIRM H

Multi angle

I will be speaking of an application of Berkovich spaces to questions related to the existence of rational points on varieties. More precisely, several local-global principles applicable to quadratic forms will be presented, all of them obtained by working over Berkovich analytic curves. The main tool I employ is an adaptation of the so called patching technique, which has lately become an important method for the study of such questions.

14G22 ; 11E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hasse proved that for quadrics the existence of rational points reduces to the existence of solutions over local fields. In many cases, cohomological constructions provide obstructions to such a local to global principle. The objective of these lectures is to give an introduction to these cohomological tools.

20G10 ; 11E08 ; 11E72

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hasse proved that for quadrics the existence of rational points reduces to the existence of solutions over local fields. In many cases, cohomological constructions provide obstructions to such a local to global principle. The objective of these lectures is to give an introduction to these cohomological tools.

20G10 ; 11E08 ; 11E72

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hasse proved that for quadrics the existence of rational points reduces to the existence of solutions over local fields. In many cases, cohomological constructions provide obstructions to such a local to global principle. The objective of these lectures is to give an introduction to these cohomological tools.

20G10 ; 11E08 ; 11E72

Sélection Signaler une erreur