En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 13D02 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the unirationality of Hurwitz spaces - Tanturri, Fabio (Auteur de la conférence) | CIRM H

Multi angle

In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two joint works with Frank-Olaf Schreyer.[-]
In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two ...[+]

14H10 ; 14M20 ; 14Q05 ; 13D02

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hodge theory and syzygies of the Jacobian ideal - Dimca, Alexandru (Auteur de la conférence) | CIRM H

Multi angle

Let $f$ be a homogeneous polynomial, defining a principal Zariski open set $D(f)$ in some complex projective space $\mathbb{P}^n$ and a Milnor fiber $F(f)$ in the affine space $\mathbb{C}^{n+1}$. Let $f_0, . . . , f_n$ denote the partial derivatives of $f$ with respect to $x_0, . . . , x_n$ and consider syzygies $a_0f_0 + a_1f1 + a_nf_n = 0$, where $a_j$ are homogeneous polynomials of the same degree $k$.
Using the mixed Hodge structure on $D(f)$ and $F(f)$, one can obtain information on the possible values of $k$.[-]
Let $f$ be a homogeneous polynomial, defining a principal Zariski open set $D(f)$ in some complex projective space $\mathbb{P}^n$ and a Milnor fiber $F(f)$ in the affine space $\mathbb{C}^{n+1}$. Let $f_0, . . . , f_n$ denote the partial derivatives of $f$ with respect to $x_0, . . . , x_n$ and consider syzygies $a_0f_0 + a_1f1 + a_nf_n = 0$, where $a_j$ are homogeneous polynomials of the same degree $k$.
Using the mixed Hodge structure on ...[+]

14B05 ; 13D02 ; 32S35

Sélection Signaler une erreur