En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46B85 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970's. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of branches.
In this talk we will outline a proof that the above mentioned embeddability results cannot be obtained using the embedding method which was used for trees by Bourgain (1986) and for binary branching diamonds and Laakso graphs by Johnson and Schechtman (2009), and which is based on a classical James' characterization of superreflexivity (the factorization between the summing basis and the unit vector basis of $\ell_1$). Our proof uses a “self-improvement” argument and the Ramsey theorem.
Joint work with M.I. Ostrovskii.[-]
In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970's. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of ...[+]

46B85 ; 05C12 ; 30L05 ; 46B07 ; 46B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Exploring the relations between algebraic and geometric properties of a group and the geometry of the Banach spaces on which it can act is a fascinating program, still widely mysterious, and which is tightly connected to coarse embeddability of graphs into Banach spaces. I will present a recent contribution, joint with Tim de Laat, where we give a spectral (hilbertian) criterion for fixed point properties on uniformly curved Banach spaces.

46B85 ; 20F65 ; 47H10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Coarse dimension reduction - Naor, Assaf (Auteur de la conférence) | CIRM H

Post-edited

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Finite quotients in coarse geometry - Khukhro, Anastasia (Auteur de la conférence) | CIRM H

Multi angle

The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite quotients of finitely generated groups, and survey some of its useful properties and associated constructions.[-]
The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite ...[+]

46B85 ; 20F65 ; 20F69

Sélection Signaler une erreur