En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20F65 50 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasi-actions and almost normal subgroups - Margolis, Alex (Auteur de la Conférence) | CIRM H

Virtualconference

If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.[-]
If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. ...[+]

20F65 ; 20E08 ; 20J05 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Embeddings between RAAGs (part 1) - Genevois, Anthony (Auteur de la Conférence) | CIRM H

Multi angle

Right-angled Artin groups, aka partially commutative groups, naturally define an interpolation between free groups and abelian free groups. The mini-course is dedicated to the question: given two right-angled Artin groups, how can we know whether one is isomorphic to a subgroup of the other? Even though this is a basic algebraic question, it remains widely open in full generality. Our goal will be to show how the combinatorial geometry of quasi-median graphs hilights some aspects of this problem. [-]
Right-angled Artin groups, aka partially commutative groups, naturally define an interpolation between free groups and abelian free groups. The mini-course is dedicated to the question: given two right-angled Artin groups, how can we know whether one is isomorphic to a subgroup of the other? Even though this is a basic algebraic question, it remains widely open in full generality. Our goal will be to show how the combinatorial geometry of ...[+]

20F65 ; 05C25 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Khovanov-Seidel braids representation - Queffelec, Hoel (Auteur de la Conférence) | CIRM H

Multi angle

Khovanov and Seidel introduced in the early 2000's an action of the braid group by autoequi-valences on the homotopy category of projective modules over the zig-zag algebra. This categorical action descends to the Burau representation, one of the most famous braid representations, but unlike the classical story, the lifting is faithful. It is interesting to notice that simultaneously, the Burau representation was also extended into a faithful finite-dimensional linear representation by Lawrence, Krammer and Bigelow, proving the linearity of the braid group.
I will review the basic constructions, both at the level of vector representations and at the ca-tegorical level. We will discuss possible extensions of these from classical braids (type A) to larger Artin-Tits groups, spherical or not, and try to relate Khovanov-Seidel's construction to Soergel bimodules and categorified quantum groups. I will also try to emphasize several metric aspects that appear in an elegant way from the categorical setting, with an emphasis on Bridgeland's stability conditions. Along the way, I would like to list several open questions and problems that I care about, hoping that someone in the audience will come up with a good idea.[-]
Khovanov and Seidel introduced in the early 2000's an action of the braid group by autoequi-valences on the homotopy category of projective modules over the zig-zag algebra. This categorical action descends to the Burau representation, one of the most famous braid representations, but unlike the classical story, the lifting is faithful. It is interesting to notice that simultaneously, the Burau representation was also extended into a faithful ...[+]

20F36 ; 18G35 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 1 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 2 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 3 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The fine curve graph of a closed surface is a graph on which the group of homeomorphisms of the surface acts faithfully by isometries. This graph is Gromov-hyperbolic. In this talk, we will explore the links between the dynamics of a surface homeomorphism and the type of isometry of its action on the fine curve graph. Joint works with Jonathan Bowden, Sebastian Hensel, Kathryn Mann, and Richard Webb and with Pierre-Antoine Guihéneuf.

20F65 ; 37E30 ; 37E45 ; 57M60 ; 57S05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pseudo-Anosov braids are generic - Wiest, Bert (Auteur de la Conférence) | CIRM H

Multi angle

We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the conjugacy search problem can be solved in quadratic time. The idea behind both results is that generic braids can be conjugated ''easily'' into a rigid braid.
braid groups - Garside groups - Nielsen-Thurston classification - pseudo-Anosov - conjugacy problem[-]
We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the ...[+]

20F36 ; 20F10 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely many factor representations of type $II_1$.[-]
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely ...[+]

20E08 ; 20F65 ; 37B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Kazhdan projections - Drutu, Cornelia (Auteur de la Conférence) | CIRM H

Multi angle

Kazhdan projections are usually considred objects relevant in operator algebras. In particular, they played a central part in the construction of counter-examples to the Baum-Connes conjecture.
In this talk I shall explain how, in the general setting of a family of representations on Banach spaces, one can reformulate the Kazhdan property "almost invariant implies invariant vectors" in terms of Kazhdan projections, providing also an explicit formula of the latter, using Markov operators associated to a random walk on the group. I will then explain some applications of this new approach.
This is joint work with Piotr Nowak.[-]
Kazhdan projections are usually considred objects relevant in operator algebras. In particular, they played a central part in the construction of counter-examples to the Baum-Connes conjecture.
In this talk I shall explain how, in the general setting of a family of representations on Banach spaces, one can reformulate the Kazhdan property "almost invariant implies invariant vectors" in terms of Kazhdan projections, providing also an explicit ...[+]

20F65 ; 46B04

Sélection Signaler une erreur