En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20F65 46 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pseudo-Anosov braids are generic - Wiest, Bert (Auteur de la Conférence) | CIRM H

Multi angle

We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the conjugacy search problem can be solved in quadratic time. The idea behind both results is that generic braids can be conjugated ''easily'' into a rigid braid.
braid groups - Garside groups - Nielsen-Thurston classification - pseudo-Anosov - conjugacy problem[-]
We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the ...[+]

20F36 ; 20F10 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely many factor representations of type $II_1$.[-]
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely ...[+]

20E08 ; 20F65 ; 37B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the surface. This is partly joint work with François Dahmani.[-]
Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the ...[+]

20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Automorphisms of hyperbolic groups and growth - Horbez, Camille (Auteur de la Conférence) | CIRM H

Post-edited

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.[-]
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...[+]

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The visual boundary of hyperbolic free-by-cyclic groups - Stark, Emily (Auteur de la Conférence) | CIRM H

Post-edited

Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further study the boundary and large-scale geometry of these groups. In this talk, I will explain how to construct explicit embeddings of non-planar graphs into the boundary of these groups whenever the group is hyperbolic. Along the way, I will illustrate how our methods distinguish free-by-cyclic groups which are the fundamental group of a 3-manifold. This is joint work with Yael Algom-Kfir and Arnaud Hilion.[-]
Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further ...[+]

20F65 ; 20F67 ; 20E36

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Finite quotients in coarse geometry - Khukhro, Anastasia (Auteur de la Conférence) | CIRM H

Multi angle

The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite quotients of finitely generated groups, and survey some of its useful properties and associated constructions.[-]
The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite ...[+]

46B85 ; 20F65 ; 20F69

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of surfaces.
To avoid some finite order behavior, we restrict attention to the subset $UPG(F_{n})$ of $Out(F_{n})$ consisting of polynomially growing elements whose action on $H_{1}(F_{n}, Z)$ is unipotent. In particular, if $f$ is polynomially growing and acts trivially on $H_{1}(F_{n}, Z_{3})$ then $f $ is in $UPG(F_{n})$ and further every polynomially growing element of $Out(F_{n})$ has a power that is in $UPG(F_{n})$. The goal of the talk is to describe an algorithm to decide given $f,g$ in $UPG(F_{n})$ whether or not there is h in $Out(F_{n})$ such that $hf h^{-1} = g$.
The conjugacy problem for linearly growing elements of $UPG(F_{n})$ was solved by Cohen-Lustig. Krstic-Lustig-Vogtmann solved the case of linearly growing elements of $Out(F_{n})$.
A key technique is our use of train track representatives for elements of $Out(F_{n})$, a method pioneered by Bestvina-Handel in the early 1990s that has since been ubiquitous in the study of $Out(F_{n})$.[-]
(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of ...[+]

20F65 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
An endomorphism of a finitely generated free group naturally descends to an injective endomorphism on the stable quotient. We establish a geometric incarnation of this fact : an expanding irreducible train track map inducing an endomorphism of the fundamental group determines an expanding irreducible train track representative of the injective endomorphism of the stable quotient. As an application, we prove that the property of having fully irreducible monodromy for a splitting of a hyperbolic free-by-cyclic group G depends only on the component of the BNS invariant $\sum \left ( G \right )$ containing the associated homomorphism to the integers. In particular, it follows that if G is the mapping torus of an atoroidal fully irreducible automorphism of a free group and if the union of $\sum \left ( G \right ) $ and $\sum \left ( G \right )$ is connected then for every splitting of $G$ as a (f.g. free)-by-(infinite cyclic) group the monodromy is fully irreducible.
This talk is based on joint work with Spencer Dowdall and Christopher Leininger.[-]
An endomorphism of a finitely generated free group naturally descends to an injective endomorphism on the stable quotient. We establish a geometric incarnation of this fact : an expanding irreducible train track map inducing an endomorphism of the fundamental group determines an expanding irreducible train track representative of the injective endomorphism of the stable quotient. As an application, we prove that the property of having fully ...[+]

20F65 ; 57Mxx ; 37Bxx ; 37Dxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On subgroups of R. Thompson's group $F$ - Sapir, Mark (Auteur de la Conférence) | CIRM H

Post-edited

We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employs Jones' subgroup of the R. Thompson group $F$ and leads to an explicit finitely generated example. The second way employs directed 2-complexes and 2-dimensional analogs of Stallings' core graphs, and gives many implicit examples. We also show that $F$ has a decreasing sequence of finitely generated subgroups $F>H_1>H_2>...$ such that $\cap H_i={1}$ and for every $i$ there exist only finitely many subgroups of $F$ containing $H_i$.[-]
We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employs Jones' subgroup of the R. Thompson group $F$ and leads to an explicit finitely generated example. The second way employs directed 2-complexes and 2-dimensional analogs of Stallings' core graphs, ...[+]

20F65 ; 20E07 ; 20F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed.[-]
A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially ...[+]

20F67 ; 20F65

Sélection Signaler une erreur