En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Mauri, Mirko 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The geometric P=W conjecture is a conjectural description of the asymptotic behavior of a celebrated correspondence in non-abelian Hodge theory. In particular, it is expected that the dual boundary complex of the compactification of character varieties is a sphere. In a joint work with Enrica Mazzon and Matthew Stevenson, we manage to compute the first non-trivial examples of dual complexes in the compact case. This requires to develop a new theory of essential skeletons over a trivially-valued field. As a byproduct, inspired by these constructions, we show that certain character varieties appear in degenerations of compact hyper-Kähler manifolds. In this talk we will explain how these new non-archimedean techniques can shed new light into classical algebraic geometry problems.[-]
The geometric P=W conjecture is a conjectural description of the asymptotic behavior of a celebrated correspondence in non-abelian Hodge theory. In particular, it is expected that the dual boundary complex of the compactification of character varieties is a sphere. In a joint work with Enrica Mazzon and Matthew Stevenson, we manage to compute the first non-trivial examples of dual complexes in the compact case. This requires to develop a new ...[+]

14G22

Sélection Signaler une erreur