En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Matomäki, Kaisa 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Higher order uniformity of the Möbius function - Matomäki, Kaisa (Auteur de la conférence) | CIRM H

Virtualconference

The Liouville function $\lambda(n)$ takes the value +1 or -1 depending on whether $n$ has an even or an odd number of prime factors. The Liouville function is closely related to the characteristic function of the primes and is believed to behave more-or-less randomly.
I will discuss my very recent work with Radziwill, Tao, Teräväinen, and Ziegler, where we show that, in almost all intervals of length $X^{\varepsilon}$, the Liouville function does not correlate with polynomial phases or more generally with nilsequences.
I will also discuss applications to superpolynomial number of sign patterns for the Liouville sequence and to a new averaged version of Chowla's conjecture.[-]
The Liouville function $\lambda(n)$ takes the value +1 or -1 depending on whether $n$ has an even or an odd number of prime factors. The Liouville function is closely related to the characteristic function of the primes and is believed to behave more-or-less randomly.
I will discuss my very recent work with Radziwill, Tao, Teräväinen, and Ziegler, where we show that, in almost all intervals of length $X^{\varepsilon}$, the Liouville function ...[+]

11B30 ; 11N25 ; 11N64

Sélection Signaler une erreur