En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Dimca, Alexandru 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A computational approach to Milnor fiber cohomology - Dimca, Alexandru (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we consider the Milnor fiber F associated to a reduced projective plane curve $C$. A computational approach for the determination of the characteristic polynomial of the monodromy action on the first cohomology group of $F$, also known as the Alexander polynomial of the curve $C$, is presented. This leads to an effective algorithm to detect all the roots of the Alexander polynomial and, in many cases, explicit bases for the monodromy eigenspaces in terms of polynomial differential forms. The case of line arrangements, where there are many open questions, will illustrate the complexity of the problem. These results are based on joint work with Morihiko Saito, and with Gabriel Sticlaru.[-]
In this talk we consider the Milnor fiber F associated to a reduced projective plane curve $C$. A computational approach for the determination of the characteristic polynomial of the monodromy action on the first cohomology group of $F$, also known as the Alexander polynomial of the curve $C$, is presented. This leads to an effective algorithm to detect all the roots of the Alexander polynomial and, in many cases, explicit bases for the ...[+]

32S55 ; 32S35 ; 32S22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hodge theory and syzygies of the Jacobian ideal - Dimca, Alexandru (Auteur de la Conférence) | CIRM H

Multi angle

Let $f$ be a homogeneous polynomial, defining a principal Zariski open set $D(f)$ in some complex projective space $\mathbb{P}^n$ and a Milnor fiber $F(f)$ in the affine space $\mathbb{C}^{n+1}$. Let $f_0, . . . , f_n$ denote the partial derivatives of $f$ with respect to $x_0, . . . , x_n$ and consider syzygies $a_0f_0 + a_1f1 + a_nf_n = 0$, where $a_j$ are homogeneous polynomials of the same degree $k$.
Using the mixed Hodge structure on $D(f)$ and $F(f)$, one can obtain information on the possible values of $k$.[-]
Let $f$ be a homogeneous polynomial, defining a principal Zariski open set $D(f)$ in some complex projective space $\mathbb{P}^n$ and a Milnor fiber $F(f)$ in the affine space $\mathbb{C}^{n+1}$. Let $f_0, . . . , f_n$ denote the partial derivatives of $f$ with respect to $x_0, . . . , x_n$ and consider syzygies $a_0f_0 + a_1f1 + a_nf_n = 0$, where $a_j$ are homogeneous polynomials of the same degree $k$.
Using the mixed Hodge structure on ...[+]

14B05 ; 13D02 ; 32S35

Sélection Signaler une erreur