En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Sapir, Mark 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On subgroups of R. Thompson's group $F$ - Sapir, Mark (Auteur de la Conférence) | CIRM H

Post-edited

We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employs Jones' subgroup of the R. Thompson group $F$ and leads to an explicit finitely generated example. The second way employs directed 2-complexes and 2-dimensional analogs of Stallings' core graphs, and gives many implicit examples. We also show that $F$ has a decreasing sequence of finitely generated subgroups $F>H_1>H_2>...$ such that $\cap H_i={1}$ and for every $i$ there exist only finitely many subgroups of $F$ containing $H_i$.[-]
We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employs Jones' subgroup of the R. Thompson group $F$ and leads to an explicit finitely generated example. The second way employs directed 2-complexes and 2-dimensional analogs of Stallings' core graphs, ...[+]

20F65 ; 20E07 ; 20F05

Sélection Signaler une erreur