En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Pajot, Hervé 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

30 years of $T(b)$ theorems - Auscher, Pascal (Auteur de la Conférence) | CIRM H

Multi angle

The $T(b)$ theorem proved 30 years ago by David, Journé and Semmes, following a first result of McIntosh and Meyer, has proved to be a powerful and versatile tool for a number of applications. We will discuss history and main applications including recent ones.

42B20 ; 42B25 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The Toeplitz square peg problem asks if every simple closed curve in the plane inscribes a square. This is known for sufficiently regular curves (e.g. polygons), but is open in general. We show that the answer is affirmative if the curve consists of two Lipschitz graphs of constant less than 1 using an integration by parts technique, and give some related problems which look more tractable.

55N45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Terence Tao - Tao, Terence (Personne interviewée) | CIRM H

Post-edited

Terence Tao (born 17 July 1975) is an Australian-American mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, compressed sensing and analytic number theory. As of 2015, he holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles. Tao was a co-recipient of the 2006 Fields Medal and the 2014 Breakthrough Prize in Mathematics.[-]
Terence Tao (born 17 July 1975) is an Australian-American mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, compressed sensing and analytic number theory. As of 2015, he holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles. Tao was a ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Parametrizing with Guy - Toro, Tatiana (Auteur de la Conférence) | CIRM H

Multi angle

Over the past 20 years we have been interested in finding good parameterizations for sets that are well approximated by nice sets. In this talk we will discuss the meanings of good and nice. We will recall some the results from the past and present new results concerning the regularity of sets that can be well approximated by Lipschitz graphs.

28A75 ; 49Q05 ; 49Q20 ; 49Kxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In earlier work, Filoche and Mayboroda introduced the function $u$ solving $Lu = 1$, and showed numerically that it strongly reflects this localization. In this talk, we deepen the connection between the eigenfunctions and this landscape function $u$ by proving that its reciprocal $1/u$ acts as an effective potential. The effective potential governs the exponential decay of the eigenfunctions of the system and delivers information on the distribution of eigenvalues near the bottom of the spectrum.[-]
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In ...[+]

47A75 ; 81Vxx ; 81Q10 ; 35P20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In a joint work with Maria Colombo and Luigi De Rosa we consider the Cauchy problem for the ipodissipative Navier-Stokes equations, where the classical Laplacian $-\Delta$ is substited by a fractional Laplacian $(-\Delta)^\alpha$. Although a classical Hopf approach via a Galerkin approximation shows that there is enough compactness to construct global weak solutions satisfying the energy inequality à la Leray, we show that such solutions are not unique when $\alpha$ is small enough and the initial data are not regular. Our proof is a simple adapation of the methods introduced by Laszlo Székelyhidi and myself for the Euler equations. The methods apply for $\alpha < \frac{1}{2}$, but in order to show that they produce Leray solutions some more care is needed and in particular we must take smaller exponents.[-]
In a joint work with Maria Colombo and Luigi De Rosa we consider the Cauchy problem for the ipodissipative Navier-Stokes equations, where the classical Laplacian $-\Delta$ is substited by a fractional Laplacian $(-\Delta)^\alpha$. Although a classical Hopf approach via a Galerkin approximation shows that there is enough compactness to construct global weak solutions satisfying the energy inequality à la Leray, we show that such solutions are not ...[+]

35Q31 ; 35A01 ; 35D30

Sélection Signaler une erreur