Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $\lambda$ be the Liouville function, defined by $\lambda(n) = (-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative Let $\lambda$ be the Liouville function, defined by $\lambda(n)=(-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative function is believed to exhibit pseudo-random statistical properties. For example, its partial sums are conjectured to obey the square-root cancellation estimate $\sum_{n \leq x} \lambda(n)=O\left(x^{1 / 2+\varepsilon}\right)$; this is equivalent to the Riemann Hypothesis.
The Fourier uniformity conjecture (a close cousin of the Chowla and Sarnak conjectures) concerns the pseudo-random behaviour of the Liouville function in short intervals. In 2023, Walsh proved that, for $\exp \left((\log X)^{1 / 2+\varepsilon}\right) \leq H \leq X$,
$
\sum_{X \lt x \lt 2X} \sup _{\alpha \in \mathbb{R}}\left|\sum_{x\lt n \lt x+H} \lambda(n) e(n \alpha)\right|=o(H X)
$
as $X \rightarrow \infty$. This non-correlation estimate is expected to hold for any $H=H(X)$ tending arbitrarily slowly to infinity with $X$ : this is the Fourier uniformity conjecture.
We improve on Walsh's range, proving that the Fourier uniformity conjecture holds for intervals of length $H \geq \exp \left((\log X)^{2 / 5+\varepsilon}\right)$.
[-]
Let $\lambda$ be the Liouville function, defined by $\lambda(n) = (-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative Let $\lambda$ be the Liouville function, defined by $\lambda(n)=(-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative function is believed to exhibit pseudo-random statistical ...
[+]
11N37 ; 11N64 ; 11K65
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
T.C. Brown and A.R. Freedman proved that the set $\mathcal{P}_{2}$ of products of two primes contains no dense cluster; technically, $\mathcal{P}_{2}$ has a zero upper Banach density, defined as $\delta^{*}(\mathcal{P}_{2}) =\lim_{H\mapsto \infty} \limsup_{x\mapsto \infty} \frac{1}{H} Card \{n\in \mathcal{P}_{2}:x< n\leq x+H\}$.
Pramod Eyyunni, Sanoli Gun and I jointly studied the local behaviour of the product of two shifted primes $\mathcal{Q}_{2}=\{(q-1)(r-1):q,r \, primes\}$. Assuming a classical conjecture of Dickson, we proved that $\delta^{*}(\mathcal{Q}_{2}) = 1/6$. Notice that we know no un-conditional proof that $\delta^{*}(\mathcal{Q}_{2})$ is positive. The application, which was indeed our motivation, concerns the study of the local behaviour of the set $\mathcal{V}$ of values of Euler's totient function. Assuming Dickson's conjecture, we prove that $\delta^{*}(\mathcal{V})\geq 1/4$. The converse inequality $\delta^{*}(\mathcal{V})\leq 1/4$ had been proved in the previous millenium by K. Ford, S. Konyagin and C. Pomerance.
[-]
T.C. Brown and A.R. Freedman proved that the set $\mathcal{P}_{2}$ of products of two primes contains no dense cluster; technically, $\mathcal{P}_{2}$ has a zero upper Banach density, defined as $\delta^{*}(\mathcal{P}_{2}) =\lim_{H\mapsto \infty} \limsup_{x\mapsto \infty} \frac{1}{H} Card \{n\in \mathcal{P}_{2}:x< n\leq x+H\}$.
Pramod Eyyunni, Sanoli Gun and I jointly studied the local behaviour of the product of two shifted primes $\m...
[+]
11B83 ; 11B05 ; 11N32 ; 11N64
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Liouville function $\lambda(n)$ takes the value +1 or -1 depending on whether $n$ has an even or an odd number of prime factors. The Liouville function is closely related to the characteristic function of the primes and is believed to behave more-or-less randomly.
I will discuss my very recent work with Radziwill, Tao, Teräväinen, and Ziegler, where we show that, in almost all intervals of length $X^{\varepsilon}$, the Liouville function does not correlate with polynomial phases or more generally with nilsequences.
I will also discuss applications to superpolynomial number of sign patterns for the Liouville sequence and to a new averaged version of Chowla's conjecture.
[-]
The Liouville function $\lambda(n)$ takes the value +1 or -1 depending on whether $n$ has an even or an odd number of prime factors. The Liouville function is closely related to the characteristic function of the primes and is believed to behave more-or-less randomly.
I will discuss my very recent work with Radziwill, Tao, Teräväinen, and Ziegler, where we show that, in almost all intervals of length $X^{\varepsilon}$, the Liouville function ...
[+]
11B30 ; 11N25 ; 11N64