En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11K65 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Improved bounds for the Fourier uniformity conjecture - Pilatte, Cédric (Auteur de la conférence) | CIRM H

Multi angle

Let $\lambda$ be the Liouville function, defined by $\lambda(n) = (-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative Let $\lambda$ be the Liouville function, defined by $\lambda(n)=(-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative function is believed to exhibit pseudo-random statistical properties. For example, its partial sums are conjectured to obey the square-root cancellation estimate $\sum_{n \leq x} \lambda(n)=O\left(x^{1 / 2+\varepsilon}\right)$; this is equivalent to the Riemann Hypothesis.

The Fourier uniformity conjecture (a close cousin of the Chowla and Sarnak conjectures) concerns the pseudo-random behaviour of the Liouville function in short intervals. In 2023, Walsh proved that, for $\exp \left((\log X)^{1 / 2+\varepsilon}\right) \leq H \leq X$,

$
\sum_{X \lt x \lt 2X} \sup _{\alpha \in \mathbb{R}}\left|\sum_{x\lt n \lt x+H} \lambda(n) e(n \alpha)\right|=o(H X)
$

as $X \rightarrow \infty$. This non-correlation estimate is expected to hold for any $H=H(X)$ tending arbitrarily slowly to infinity with $X$ : this is the Fourier uniformity conjecture.

We improve on Walsh's range, proving that the Fourier uniformity conjecture holds for intervals of length $H \geq \exp \left((\log X)^{2 / 5+\varepsilon}\right)$.[-]
Let $\lambda$ be the Liouville function, defined by $\lambda(n) = (-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative Let $\lambda$ be the Liouville function, defined by $\lambda(n)=(-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative function is believed to exhibit pseudo-random statistical ...[+]

11N37 ; 11N64 ; 11K65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ,g;x)\gg \frac{x}{\left ( \log \log x\right )^{1+\varepsilon }}$,
while we prove that $E(\varepsilon ,g;x)=o(x)$ as $x\rightarrow \infty$ for every multiplicative function $g$.[-]
Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ...[+]

11N37 ; 11K65 ; 11N60

Sélection Signaler une erreur