En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20C30 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E16 ; 20C30 ; 05A15 ; 05C10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nonsymmetric Jack and Macdonald superpolynomials - Dunkl, Charles (Auteur de la Conférence) | CIRM H

Virtualconference

Superpolynomials are formed with $N$ commuting and anti-commuting (skew) variables. By considering the space of skew variables of fixed degree as a module of the symmetric group $\mathcal{S}_{N}$ the theory of generalized Jack polynomials constructed by S Griffeth can be used to define nonsymmetric Jack superpolynomials. We present the theory, give details about the structure and derive norm formulas. Denote the parameter by $\kappa$ then the norm is positive-definite for $-\frac{1}{N}<\kappa<\frac{1}{N}$. Analogously there is a structure as Hecke algebra $\mathcal{H}_{N}(t)$-module on the skew polynomials and this allows the use of the theory of vectorvalued $(q, t)$-Macdonald polynomials studied by J-G Luque and the author. We outline the theory and present norm formulas and evaluations at special points. The norm is positive-definite for $q>0$ and min $(q^{1 / N}, q^{-1 / N}) < t < max (q^{1 / N}, q^{-1 / N} )$. As in the scalar case the evaluations use $(q, t)$-hook products.[-]
Superpolynomials are formed with $N$ commuting and anti-commuting (skew) variables. By considering the space of skew variables of fixed degree as a module of the symmetric group $\mathcal{S}_{N}$ the theory of generalized Jack polynomials constructed by S Griffeth can be used to define nonsymmetric Jack superpolynomials. We present the theory, give details about the structure and derive norm formulas. Denote the parameter by $\kappa$ then the ...[+]

20C30 ; 20C08 ; 33C52 ; 05E05

Sélection Signaler une erreur