Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).
[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...
[+]
37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.
[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...
[+]
57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.
[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...
[+]
57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).
[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...
[+]
37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).
[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...
[+]
37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.
[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...
[+]
57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
These lectures will address the dynamics of vector fields or diffeomorphisms of compact manifolds. For the study of generic properties or for the construction of examples, it is often useful to be able to perturb a system. This generally leads to delicate problems: a local modification of the dynamics may cause a radical change in the behavior of the orbits. For the $C^1$-topology, various techniques have been developed which allow to perturb while controlling the dynamics: closing and connection of orbits, perturbation of the tangent dynamics... We derive various applications to the description of $C^1$-generic diffeomorphisms.
[-]
These lectures will address the dynamics of vector fields or diffeomorphisms of compact manifolds. For the study of generic properties or for the construction of examples, it is often useful to be able to perturb a system. This generally leads to delicate problems: a local modification of the dynamics may cause a radical change in the behavior of the orbits. For the $C^1$-topology, various techniques have been developed which allow to perturb ...
[+]
37C05 ; 37C29 ; 37Dxx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.
[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...
[+]
37C05 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.
[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...
[+]
37C05 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The study of the path-connectedness of the space of $C^{r}$ actions of $\mathbb{Z}^{2}$ on the interval [0,1] plays an important role in the classification of codimension 1 foliations on 3 manifolds. One way to deform actions is by conjugation. If an action can be brought arbitrarily close to the trivial one by conjugation, it is said to be quasi-reducible. In this talk, we will present and compare obstructions to quasi-reducibility in different regularity classes, and draw conclusions concerning the initial connectedness problem.
[-]
The study of the path-connectedness of the space of $C^{r}$ actions of $\mathbb{Z}^{2}$ on the interval [0,1] plays an important role in the classification of codimension 1 foliations on 3 manifolds. One way to deform actions is by conjugation. If an action can be brought arbitrarily close to the trivial one by conjugation, it is said to be quasi-reducible. In this talk, we will present and compare obstructions to quasi-reducibility in different ...
[+]
37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25