En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C12 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Invariance of plurigenera for foliations on surfaces - Floris, Enrica (Auteur de la Conférence) | CIRM H

Multi angle

Let $X$ be a smooth algebraic surface. A foliation $F$ on $X$ is, roughly speaking, a subline bundle $T_F$ of the tangent bundle of $X$. The dual of $T_F$ is called the canonical bundle of the foliation $K_F$. In the last few years birational methods have been successfully used in order to study foliations. More precisely, geometric properties of the foliation are translated into properties of the canonical bundle of the foliation. One of the most important invariants describing the properties of a line bundle $L$ is its Kodaira dimension $\kappa(L)$, which measures the growth of the global sections of $L$ and its tensor powers. The Kodaira dimension of a foliation $F$ is defined as the Kodaira dimension of its canonical bundle $\kappa(K_F)$. In their fundamental works, Brunella and McQuillan give a classfication of foliations on surfaces on the model of Enriques-Kodaira classification of surfaces. The next step is the study of the behaviour of families of foliations. Brunella proves that, for a family of foliations $(X_t, F_t)$ of dimension one on surfaces, satisfying certain hypotheses of regularity, the Kodaira dimension of the foliation does not depend on $t$. By analogy with Siu's Invariance of Plurigenera, it is natural to ask whether for a family of foliations $(X_t, F_t)$ the dimensions of global sections of the canonical bundle and its powers depend on $t$. In this talk we will discuss to which extent an Invariance of Plurigenera for foliations is true and under which hypotheses on the family of foliations it holds. [-]
Let $X$ be a smooth algebraic surface. A foliation $F$ on $X$ is, roughly speaking, a subline bundle $T_F$ of the tangent bundle of $X$. The dual of $T_F$ is called the canonical bundle of the foliation $K_F$. In the last few years birational methods have been successfully used in order to study foliations. More precisely, geometric properties of the foliation are translated into properties of the canonical bundle of the foliation. One of the ...[+]

14E30 ; 14J10 ; 53C12

Sélection Signaler une erreur