En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C17 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Score matching and sub-Riemannian bridges - Grong, Erlend (Auteur de la Conférence) | CIRM H

Multi angle

We discuss how to simulate bridge processes by conditioning a stochastic process on a manifold whose generator is a hypo-elliptic operator. This operator is, up to a drift-term, the sub-Laplacian of a bracketgenerating sub-Riemannian structure, meaning in particular that it has positive smooth density everywhere. The logarithmic gradient of this density is called the score, and we show that it is needed to describe the generator of the bridge process. We therefore discuss several methods for how we can estimate the score using a neural network, with examples. The results are from a joint work with Stefan Sommer (Copenhagen) and Karen Habermann (Warwick).[-]
We discuss how to simulate bridge processes by conditioning a stochastic process on a manifold whose generator is a hypo-elliptic operator. This operator is, up to a drift-term, the sub-Laplacian of a bracketgenerating sub-Riemannian structure, meaning in particular that it has positive smooth density everywhere. The logarithmic gradient of this density is called the score, and we show that it is needed to describe the generator of the bridge ...[+]

58J65 ; 53C17 ; 62R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Simulation of conditioned diffusion processes is an essential tool in inference for stochastic processes, data imputation, generative modelling, and geometric statistics. Whilst simulating diffusion bridge processes is already difficult on Euclidean spaces, when considering diffusion processes on Riemannian manifolds the geometry brings in further complications. In even higher generality, advancing from Riemannian to sub-Riemannian geometries introduces hypoellipticity, and the possibility of finding appropriate explicit approximations for the score, the logarithmic gradient of the density, of the diffusion process is removed. We handle these challenges and construct a method for bridge simulation on sub-Riemannian manifolds by demonstrating how recent progress in machine learning can be modified to allow for training of score approximators on sub-Riemannian manifolds. Since gradients dependent on the horizontal distribution, we generalise the usual notion of denoising loss to work with non-holonomic frames using a stochastic Taylor expansion, and we demonstrate the resulting scheme both explicitly on the Heisenberg group and more generally using adapted coordinates. Joint work with Erlend Grong (Bergen) and Stefan Sommer (Copenhagen).[-]
Simulation of conditioned diffusion processes is an essential tool in inference for stochastic processes, data imputation, generative modelling, and geometric statistics. Whilst simulating diffusion bridge processes is already difficult on Euclidean spaces, when considering diffusion processes on Riemannian manifolds the geometry brings in further complications. In even higher generality, advancing from Riemannian to sub-Riemannian geometries ...[+]

58J65 ; 53C17 ; 62R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stokes' theorem in Heisenberg groups - Vittone, Davide (Auteur de la Conférence) | CIRM H

Multi angle

We introduce the notion of submanifolds with boundary with intrinsic $C^{1}$ regularity in the setting of sub-Riemannian Heisenberg groups. We present a Stokes' Theorem for such submanifolds involving the integration of Heisenberg differential foms introduced by Rumin. This is a joint work with M. Di Marco, A. Julia and S. Nicolussi Golo.

53C17 ; 26B20 ; 53C65 ; 58C35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This will be an introduction to sub-Riemannian geometry from the point of view of control theory. We will define sub-Riemannian structures and prove the Chow Theorem. We will describe normal and abnormal geodesics and discuss the completeness of the Carnot-Carathéodory distance (Hopf-Rinow Theorem). Several examples will be given (Heisenberg group, Martinet distribution, Grusin plane).

53C17 ; 49Jxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Isoperimetry with density - Morgan, Frank (Auteur de la Conférence) | CIRM H

Multi angle

In 2015 Chambers proved the Log-convex Density Conjecture, which says that for a radial density f on $R^n$, spheres about the origin are isoperimetric if and only if log f is convex (the stability condition). We discuss recent progress and open questions for other densities, unequal perimeter and volume densities, and other metrics.

49Q20 ; 53C17 ; 49N60

Sélection Signaler une erreur