En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 57R30 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...[+]

57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Irreducible lattices in semi-simple Lie groups of higher rank are not left-orderable I'll report on the problem of the left orderability of lattices in semi-simple Lie groups, and give some insight of our joint proof with Bertrand Deroin that in rank at least two, an irreducible lattice is not left-orderable. The proof will make use of the tools developed in the minicourse of Bertrand.

20F60 ; 37B05 ; 22F50 ; 37E10 ; 57R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Space of actions of groups on the real line - Deroin, Bertrand (Auteur de la Conférence) | CIRM H

Multi angle

In these lectures, we will report on some properties of the space of actions of a left-orderable group on the real line. We will notably describe the almost-periodic actions, the harmonic actions and their spaces.

20F60 ; 22F50 ; 37B05 ; 37E10 ; 57R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Taut foliations through a contact lens - Massoni, Thomas (Auteur de la Conférence) | CIRM H

Multi angle

In the late '90s, Eliashberg and Thurston established a remarkable connection between foliations and contact structures in dimension three: any co-oriented, aspherical foliation on a closed, oriented 3-manifold can be approximated by both positive and negative contact structures. Additionally, if the foliation is taut then its contact approximations are tight. In this talk, I will present a converse result on constructing taut foliations from suitable pairs of contact structures. While taut foliations are rather rigid objects, this viewpoint reveals some degree of flexibility and offers a new perspective on the L-space conjecture. A key ingredient is a generalization of a result of Burago and Ivanov on the construction of branching foliations tangent to continuous plane fields, which might be of independent interest.[-]
In the late '90s, Eliashberg and Thurston established a remarkable connection between foliations and contact structures in dimension three: any co-oriented, aspherical foliation on a closed, oriented 3-manifold can be approximated by both positive and negative contact structures. Additionally, if the foliation is taut then its contact approximations are tight. In this talk, I will present a converse result on constructing taut foliations from ...[+]

57R30 ; 57K33 ; 37D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...[+]

57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Veering triangulations and transverse foliations - Zung, Jonathan (Auteur de la Conférence) | CIRM H

Multi angle

I will present some combinatorial methods to construct and obstruct foliations transverse to a given transitive pseudo-Anosov flow. The main tool is the branched surface coming from a veering triangulation. We will show that this branched surface carries all transverse foliations, and give some criteria for deciding when the branched surface indeed carries some foliation. Parts work in progress with Siddhi Krishna and Thomas Massoni.

57R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.[-]
Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic dif...[+]

57R50 ; 57R32 ; 32C05 ; 37C05 ; 37C86 ; 37B05 ; 57R30 ; 54H15

Sélection Signaler une erreur