Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove a local version of the index theorem for Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact, we do not assume self-adjointness of the Dirac operator on the spacetime or of the associated elliptic Dirac operator on the boundary.In this case, integration of our local index theorem results in a generalization of previously known index theorems for globally hyperbolic spacetimes that allows for twisting bundles associated with non-compact gauge groups. This is joint work with Alexander Strohmaier.
[-]
We prove a local version of the index theorem for Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact, we do not assume self-adjointness of the Dirac operator on the spacetime or of the associated elliptic Dirac operator on the boundary.In this case, integration of our local index theorem results in a generalization of previously known index theorems for globally ...
[+]
58J20 ; 58J45 ; 35L05 ; 35L02 ; 58J32
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I shall explain how to define and investigate primary and secondary invariants of G-invariant Dirac operators on a cocompact G-proper manifold, with G a connected real reductive Lie group. This involves cyclic cohomology and Ktheory. After treating the case of cyclic cocycles associated to elements in the differentiable cohomology of G I will move to delocalized cyclic cocycles, in particular, I will explain the challenges in defining the delocalized eta invariant associated to the orbital integral defined by a semisimple element g in G and in showing that such an invariant enters in an Atiyah-Patodi-Singer index theorem for cocompact G-proper manifolds. I will then consider a higher version of these results, based on the Song-Tang higher orbital integrals associated to a cuspidal parabolic subgroup P¡G with Langlands decomposition P=MAN and a semisimple element g in M. This talk is based on articles with Hessel Posthuma and with Hessel Postrhuma, Yanli Song and Xiang Tang.
[-]
I shall explain how to define and investigate primary and secondary invariants of G-invariant Dirac operators on a cocompact G-proper manifold, with G a connected real reductive Lie group. This involves cyclic cohomology and Ktheory. After treating the case of cyclic cocycles associated to elements in the differentiable cohomology of G I will move to delocalized cyclic cocycles, in particular, I will explain the challenges in defining the ...
[+]
58J20 ; 19K56 ; 58J42