Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The question of using the available measurements to retrieve mathematical models characteristics (parameters, boundary conditions, initial conditions) is a key aspect of the modeling objective in biology or medicine. In a stochastic/statistical framework this question is seen as an estimation problems. From a deterministic point of view, we classical talk about inverse problems as we recover classical model inputs from outputs. When considering evolution problems,this question falls in the realm of data assimilation that can be seen from a deterministic of statistical point of view. Our objective in this course is to introduce the mathematical principles and numerical aspects behind data assimilation strategies with an emphasis on the deterministic formalism allowing to understand why data assimilation is a specific inverse problem. Our presentation will include considerations on finite dimensional problems but also on infinite dimensional problems such as the ones arising from PDE models. And we will illustrate the course with numerous examples coming from cardiovascular applications and biology.
[-]
The question of using the available measurements to retrieve mathematical models characteristics (parameters, boundary conditions, initial conditions) is a key aspect of the modeling objective in biology or medicine. In a stochastic/statistical framework this question is seen as an estimation problems. From a deterministic point of view, we classical talk about inverse problems as we recover classical model inputs from outputs. When considering ...
[+]
93E11 ; 93B30 ; 93E10 ; 35R30 ; 35L05 ; 93B07
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In many mechanical systems where energy is conserved, the phenomenon of resonance can occur, meaning that for certain time-periodic forces, the solution of the system becomes unbounded. Examples of partial differential equations describing such systems include the wave equation and equations of linearized elasticity (Lamé system). On the other hand, resonance does not occur in systems with strong dissipation, such as systems described by the heat equation. More precisely, in such a system, there exists a unique time-periodic solution for each time-periodic right-hand side. In this lecture, we will address the question "how much dissipation is necessary to prevent the occurrence of resonance?". We will analyze periodic solutions to the so-called heat-wave system, where the wave equation is coupled with the heat conduction equation via a common boundary. In this system, dissipation only exists in the heat component, and the system can be viewed as a simplified model of fluid-structure interaction. We will demonstrate that in certain geometric configurations, there exists a unique time-periodic solution for each time-periodic right-hand side, assuming sufficient regularity of the forcing term. A counterexample illustrates that this regularity requirement is stronger than in the case of the Cauchy problem. Finally, we will discuss the open question of whether the result is valid for arbitrary geometry or if there exists a geometry where resonance can occur.
[-]
In many mechanical systems where energy is conserved, the phenomenon of resonance can occur, meaning that for certain time-periodic forces, the solution of the system becomes unbounded. Examples of partial differential equations describing such systems include the wave equation and equations of linearized elasticity (Lamé system). On the other hand, resonance does not occur in systems with strong dissipation, such as systems described by the ...
[+]
35B10 ; 35K05 ; 35L05 ; 35M30 ; 35D30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a geometric version of method works in the case of the wave equation for the Laplace-Beltrami operator on a compact Riemannian manifold with boundary.
[-]
This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a ...
[+]
35R30 ; 35L05 ; 35L20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The question of using the available measurements to retrieve mathematical models characteristics (parameters, boundary conditions, initial conditions) is a key aspect of the modeling objective in biology or medicine. In a stochastic/statistical framework this question is seen as an estimation problems. From a deterministic point of view, we classical talk about inverse problems as we recover classical model inputs from outputs. When considering evolution problems,this question falls in the realm of data assimilation that can be seen from a deterministic of statistical point of view. Our objective in this course is to introduce the mathematical principles and numerical aspects behind data assimilation strategies with an emphasis on the deterministic formalism allowing to understand why data assimilation is a specific inverse problem. Our presentation will include considerations on finite dimensional problems but also on infinite dimensional problems such as the ones arising from PDE models. And we will illustrate the course with numerous examples coming from cardiovascular applications and biology.
[-]
The question of using the available measurements to retrieve mathematical models characteristics (parameters, boundary conditions, initial conditions) is a key aspect of the modeling objective in biology or medicine. In a stochastic/statistical framework this question is seen as an estimation problems. From a deterministic point of view, we classical talk about inverse problems as we recover classical model inputs from outputs. When considering ...
[+]
93E11 ; 93B30 ; 93E10 ; 35R30 ; 35L05 ; 93B07
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove a local version of the index theorem for Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact, we do not assume self-adjointness of the Dirac operator on the spacetime or of the associated elliptic Dirac operator on the boundary.In this case, integration of our local index theorem results in a generalization of previously known index theorems for globally hyperbolic spacetimes that allows for twisting bundles associated with non-compact gauge groups. This is joint work with Alexander Strohmaier.
[-]
We prove a local version of the index theorem for Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact, we do not assume self-adjointness of the Dirac operator on the spacetime or of the associated elliptic Dirac operator on the boundary.In this case, integration of our local index theorem results in a generalization of previously known index theorems for globally ...
[+]
58J20 ; 58J45 ; 35L05 ; 35L02 ; 58J32
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this lecture we shall present some recent results in collaboration with B. Geshkovski (MIT) on the design of optimal sensors and actuators for control systems. We shall mainly focus in the finite-dimensional case, using the Brunovsky normal form. This allows to reformulate the problem in a purely matricial context, which permits rewriting the problem as a minimization problem of the norm of the inverse of a change of basis matrix, and allows us to stipulate the existence of minimizers, as well as non-uniqueness, due to an invariance of the cost with respect to orthogonal transformations. We will present several numerical experiments to both visualize these artifacts and also point out towards further directions and open problems, in particular in the context of PDE infinite-dimensional models.
[-]
In this lecture we shall present some recent results in collaboration with B. Geshkovski (MIT) on the design of optimal sensors and actuators for control systems. We shall mainly focus in the finite-dimensional case, using the Brunovsky normal form. This allows to reformulate the problem in a purely matricial context, which permits rewriting the problem as a minimization problem of the norm of the inverse of a change of basis matrix, and allows ...
[+]
93B07 ; 35L05 ; 49K20 ; 42B37