En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Guillarmou, Colin 19 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank $1$, for example, when $X$ is the real hyperbolic space, $\Gamma$ is geometrically finite and $\Gamma$ $\backslash$ $X$ has infinite volume.
When $\Gamma$ is a nonuniform lattice in case $(1)$ or any group in case $(2)$, compactification of $\Gamma$ $\backslash$ $X$ and its boundary play an important role in the geometric scattering theory of $\Gamma$ $\backslash$ $X$. When $X$ is of rank at least $2$, quotients of $X$ of finite volume have also been extensively studied. There has been a lot of recent interest and work to understand quotients $\Gamma$ $\backslash$ $X$ of infinite volume. For example, there are some generalizations of convex cocompact groups, but no generalizations yet of geometrically finite groups. They are related to the notion of thin groups. One naturally expects that these locally symmetric spaces should have real analytic compactifications with corners (with codimension equal to the rank), and their boundary should also be used to parametrize the continuous spectrum and to understand the geometrically scattering theory. These compactifications also provide a natural class of manifolds with corners. In this talk, I will describe some questions, open problems and results.[-]
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank ...[+]

53C35 ; 58J50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Microlocal analysis for Kerr-de Sitter black holes - Vasy, Andras (Auteur de la Conférence) | CIRM H

Post-edited

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances.[-]
In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...[+]

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Microlocal methods for Anosov flows - Part 1 - Guillarmou, Colin (Auteur de la Conférence) | CIRM H

Multi angle

We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed manifold.[-]
We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Microlocal methods for Anosov flows - Part 2 - Guillarmou, Colin (Auteur de la Conférence) | CIRM H

Multi angle

We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed manifold.[-]
We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Microlocal methods for Anosov flows - Part 3 - Guillarmou, Colin (Auteur de la Conférence) | CIRM H

Multi angle

We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed manifold.[-]
We will introduce some tools from analysis (in particular microlocal analysis) in order to understand the Fredholm theory of Anosov flows. We will then explain how these tools can be used to study a rigidity problem consisting in determining a Riemannian metric from the lengths of its marked closed geodesics, and we will describe a variational approach to study this problem locally near a fixed negatively curved Riemannian metric on a closed ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A microlocal toolbox for hyperbolic dynamics - Dyatlov, Semyon (Auteur de la Conférence) | CIRM H

Post-edited

I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between shift to higher frequencies and escaping in the physical space. I will show meromorphic continuation of the resolvent of $X$; the poles, known as Pollicott-Ruelle resonances, describe exponential decay of correlations. As an application, I will prove that the Ruelle zeta function continues meromorphically for flows on non-compact manifolds (the compact case, known as Smale's conjecture, was recently settled by Giulietti-Liverani- Pollicott and a simple microlocal proof was given by Zworski and the speaker). Joint work with Colin Guillarmou.[-]
I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between ...[+]

37D50 ; 53D25 ; 37D20 ; 35B34 ; 35P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Resonance chains on Schottky surfaces - Weich, Tobias (Auteur de la Conférence) | CIRM H

Multi angle

Recently David Borthwick discovered through numerical calculations surprising chain structures in the resonance spectrum of certain Schottky surfaces. In this talk we will see that theses resonance chains have the same origin as the resonance chains in the classical and quantum mechanical spectrum of the three disk system and we will see that they are related to a clustering in the length spectrum. Finally the existence of these chains will be proven for three funneled Schottky surfaces in a certain geometrical limit in the Teichmüller space. Joint work with S. Barkhofen and F. Faure.[-]
Recently David Borthwick discovered through numerical calculations surprising chain structures in the resonance spectrum of certain Schottky surfaces. In this talk we will see that theses resonance chains have the same origin as the resonance chains in the classical and quantum mechanical spectrum of the three disk system and we will see that they are related to a clustering in the length spectrum. Finally the existence of these chains will be ...[+]

35P25 ; 58J50 ; 81Q05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On the boundary control method - Oksanen, Lauri (Auteur de la Conférence) | CIRM H

Post-edited

This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a geometric version of method works in the case of the wave equation for the Laplace-Beltrami operator on a compact Riemannian manifold with boundary.[-]
This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a ...[+]

35R30 ; 35L05 ; 35L20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The stability of Kerr-de Sitter black holes - Hintz, Peter (Auteur de la Conférence) | CIRM H

Multi angle

In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value formulation. Namely, appropriately interpreted, Einstein's equations can be thought of as quasilinear wave equations, and then the question is if perturbations of the initial data produce solutions which are close to, and indeed asymptotic to, a Kerr-de Sitter black hole, typically with a different mass and angular momentum. In this talk, I will emphasize geometric aspects of the stability problem, in particular showing that Kerr-de Sitter black holes with small angular momentum are stable in this sense.[-]
In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value fo...[+]

35B40 ; 58J47 ; 83C05 ; 83C35 ; 83C57

Sélection Signaler une erreur