En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Guillarmou, Colin 19 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A microlocal toolbox for hyperbolic dynamics - Dyatlov, Semyon (Auteur de la Conférence) | CIRM H

Post-edited

I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between shift to higher frequencies and escaping in the physical space. I will show meromorphic continuation of the resolvent of $X$; the poles, known as Pollicott-Ruelle resonances, describe exponential decay of correlations. As an application, I will prove that the Ruelle zeta function continues meromorphically for flows on non-compact manifolds (the compact case, known as Smale's conjecture, was recently settled by Giulietti-Liverani- Pollicott and a simple microlocal proof was given by Zworski and the speaker). Joint work with Colin Guillarmou.[-]
I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between ...[+]

37D50 ; 53D25 ; 37D20 ; 35B34 ; 35P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank $1$, for example, when $X$ is the real hyperbolic space, $\Gamma$ is geometrically finite and $\Gamma$ $\backslash$ $X$ has infinite volume.
When $\Gamma$ is a nonuniform lattice in case $(1)$ or any group in case $(2)$, compactification of $\Gamma$ $\backslash$ $X$ and its boundary play an important role in the geometric scattering theory of $\Gamma$ $\backslash$ $X$. When $X$ is of rank at least $2$, quotients of $X$ of finite volume have also been extensively studied. There has been a lot of recent interest and work to understand quotients $\Gamma$ $\backslash$ $X$ of infinite volume. For example, there are some generalizations of convex cocompact groups, but no generalizations yet of geometrically finite groups. They are related to the notion of thin groups. One naturally expects that these locally symmetric spaces should have real analytic compactifications with corners (with codimension equal to the rank), and their boundary should also be used to parametrize the continuous spectrum and to understand the geometrically scattering theory. These compactifications also provide a natural class of manifolds with corners. In this talk, I will describe some questions, open problems and results.[-]
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank ...[+]

53C35 ; 58J50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On the boundary control method - Oksanen, Lauri (Auteur de la Conférence) | CIRM H

Post-edited

This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a geometric version of method works in the case of the wave equation for the Laplace-Beltrami operator on a compact Riemannian manifold with boundary.[-]
This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a ...[+]

35R30 ; 35L05 ; 35L20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Microlocal analysis for Kerr-de Sitter black holes - Vasy, Andras (Auteur de la Conférence) | CIRM H

Post-edited

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances.[-]
In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...[+]

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The stability of Kerr-de Sitter black holes - Hintz, Peter (Auteur de la Conférence) | CIRM H

Multi angle

In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value formulation. Namely, appropriately interpreted, Einstein's equations can be thought of as quasilinear wave equations, and then the question is if perturbations of the initial data produce solutions which are close to, and indeed asymptotic to, a Kerr-de Sitter black hole, typically with a different mass and angular momentum. In this talk, I will emphasize geometric aspects of the stability problem, in particular showing that Kerr-de Sitter black holes with small angular momentum are stable in this sense.[-]
In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value fo...[+]

35B40 ; 58J47 ; 83C05 ; 83C35 ; 83C57

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Asymptotics of resonances for hyperbolic surfaces - Borthwick, David (Auteur de la Conférence) | CIRM H

Multi angle

After a brief introduction to the spectral theory of hyperbolic surfaces, we will focus on the problem of understanding the asymptotic distribution of resonances for hyperbolic surfaces. The theory of open quantum chaotic systems has inspired several interesting conjectures about this distribution. We will highlight the recent theoretical progress towards these conjectures, and present some of the latest numerical evidence.

58J50 ; 11F72 ; 11M36

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Over the last few years I developed (partly jointly with coauthors) dual 'slow/fast' transfer operator approaches to automorphic functions, resonances, and Selberg zeta functions for certain hyperbolic surfaces/orbifolds L \ H with cusps (both of finite and infinite area; arithmetic and non-arithmetic).
Both types of transfer operators arise from discretizations of the geodesic flow on L \ H. The eigenfunctions with eigenvalue 1 of slow transfer operators characterize Maass cusp forms. Conjecturally, this characterization extends to more general automorphic functions as well as to residues at resonances. The Fredholm determinant of the fast transfer operators equals the Selberg zeta function, which yields that the zeros of the Selberg zeta function (among which are the resonances) are determined by the eigenfunctions with eigenvalue 1 of the fast transfer operators. It is a natural question how the eigenspaces of these two types of transfer operators are related to each other.[-]
Over the last few years I developed (partly jointly with coauthors) dual 'slow/fast' transfer operator approaches to automorphic functions, resonances, and Selberg zeta functions for certain hyperbolic surfaces/orbifolds L \ H with cusps (both of finite and infinite area; arithmetic and non-arithmetic).
Both types of transfer operators arise from discretizations of the geodesic flow on L \ H. The eigenfunctions with eigenvalue 1 of slow transfer ...[+]

37C30 ; 11F03 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Correlation spectrum of Morse-Smale flows - Rivière, Gabriel (Auteur de la Conférence) | CIRM H

Multi angle

I will explain how one can get a complete description of the correlation spectrum of a Morse-Smale flow in terms of the Lyapunov exponents and of the periods of the flow. I will also discuss the relation of these results with differential topology.
This a joint work with Nguyen Viet Dang (Université Lyon 1).

37D15 ; 58J51 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface $\Sigma$ with boundary an amplitude, which is an $L^2$ function on the space of fields on the boundary of $\Sigma$ (i.e. the Sobolev space $H^{-s}(\mathbb{S}^1)^b$ equipped with a Gaussian measure, if the boundary of $\Sigma$ has $b$ connected components), and then how these amplitudes compose under gluing of surfaces along their boundary (the so-called Segal axioms).
This allows us to give formulas for all partition and correlation functions of the Liouville CFT in terms of $3$ point correlation functions on the Riemann sphere (DOZZ formula) and the conformal blocks, which are holomorphic functions of the moduli of the space of Riemann surfaces with marked points. This gives a link between the probabilistic approach and the representation theory approach for CFTs, and a mathematical construction and resolution of an important non-rational conformal field theory.
This is joint work with A. Kupiainen, R. Rhodes and V. Vargas. [-]
Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface $\Sigma$ with boundary an amplitude, which is an $L^2$ function on the space of fields on the boundary of $\Sigma$ (i.e. the Sobolev space $H^{-s}(\mathbb{S}^1)^b$ equipped with a Gaussian ...[+]

60D05 ; 81T80 ; 17B69 ; 81R10 ; 17B68

Sélection Signaler une erreur