En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bufetov, Alexander 54 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeros, moments and determinants - Snaith, Nina (Author of the conference) | CIRM H

Multi angle

For 20 years we have known that average values of characteristic polynomials of random unitary matrices provide a good model for moments of the Riemann zeta function. Now we consider mixed moments of characteristic polynomials and their derivatives, calculations which are motivated by questions on the distribution of zeros of the derivative of the Riemann zeta function.

15B52 ; 11M26 ; 11M06

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A fundamental question in random matrix theory is to understand how much the eigenvalues of a random matrix fluctuate.
I will address this question in the context of unitary invariant ensembles, by studying the global rigidity of the eigenvalues, or in other words the maximal deviation of an eigenvalue from its classical location.
Our approach to this question combines extreme value theory of log-correlated stochastic processes, and in particular the theory of multiplicative chaos, with asymptotic analysis of large Hankel determinants with Fisher-Hartwig symbols of various types.
In addition to optimal rigidity estimates, our approach sheds light on the extreme values and on the fractal geometry of the eigenvalue counting function.
The talk will be based on joint work in progress with Benjamin Fahs, Gaultier Lambert, and Christian Webb.[-]
A fundamental question in random matrix theory is to understand how much the eigenvalues of a random matrix fluctuate.
I will address this question in the context of unitary invariant ensembles, by studying the global rigidity of the eigenvalues, or in other words the maximal deviation of an eigenvalue from its classical location.
Our approach to this question combines extreme value theory of log-correlated stochastic processes, and in ...[+]

15B52 ; 60B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Universality in tiling models - Van Moerbeke, Pierre (Author of the conference) | CIRM H

Multi angle

We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be derived.[-]
We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be ...[+]

60B20 ; 60D05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We establish a new connection between moments of n×n random matrices $X_{n}$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s\in\mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and orthogonality relations. In each of the classical ensembles of random matrix theory (Gaussian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of hypergeometric orthogonal polynomials. We also calculate the leading order n→∞ asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects of these phenomena beyond the random matrix setting, including the Mellin transform of products and Wronskians of pairs of classical orthogonal polynomials. When the random matrix model has orthogonal or symplectic symmetry, we obtain a new duality formula relating their moments to hypergeometric orthogonal polynomials. This is work in collaboration with Fabio Cunden, Neil O' Connell and Nick Simm.[-]
We establish a new connection between moments of n×n random matrices $X_{n}$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s\in\mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and ...[+]

15B52 ; 05E05 ; 33C45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Asymptotic representation theory deals with representations of groups of growing size. For classical Lie groups there are two distinguished regimes of growth. One of them is related to representations of infinite-dimensional groups, and the other appears in combinatorial and probabilistic questions. In the talk I will discuss differences and similarities between these two settings.

22E45 ; 60B20 ; 05E10 ; 60C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

When J. Ginibre met E. Schrödinger - Bothner, Thomas (Author of the conference) | CIRM H

Multi angle

The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and Poplavskyi, Tribe, Zaboronski, we will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1+1 dimensions which are solvable by the inverse scattering method, for instance the nonlinear Schr¨odinger equation. The results of this talk are based on the recent preprint arXiv:1808.02419, joint with Jinho Baik.[-]
The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and ...[+]

60B20 ; 45M05 ; 60G70

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, given that it is at site x at time t. Using duality between occupied and unoccupied sites we obtain the analogous result for a gap of G unoccupied sites between the particle at x and the next one.[-]
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, ...[+]

82C22 ; 82C23 ; 82C20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The speed of a second class particle in the ASEP - Saenz, Axel (Author of the conference) | CIRM H

Multi angle

In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles are blocked in their movement by all other particles, while the first class particles are only blocked by other first class particles. We consider the step initial conditions so that all non-negative integer positions are occupied and all other positions are vacant at time zero. Moreover, we take exactly L second class particles to be located at the very front of the configuration at time zero. Then, using recent results of Tracy-Widom (2017) and Borodin-Wheeler (2018), we compute the asymptotic speed of the leftmost second class particle.
This is joint work with Promit Ghosal (Columbia University) and Ethan Zell (University of Virginia) in arXiv:1903.09615.[-]
In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles ...[+]

34M50 ; 60B20 ; 34E20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The supercooled Stefan problem - Shkolnikov, Mykhaylo (Author of the conference) | CIRM H

Multi angle

We will consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We will provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Holder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we will establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present. Based on joint work with Francois Delarue and Sergey Nadtochiy.[-]
We will consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We will provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to ...[+]

80A22 ; 35B44 ; 60H30 ; 35B05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present results on the dynamics of horocyclic flows on the unit tangent bundle of hyperbolic surfaces, density and equidistribution properties in particular. I will focus on infinite volume hyperbolic surfaces. My aim is to show how these properties are related to dynamical properties of geodesic flows, as product structure, ergodicity, mixing, ...

37D40

Bookmarks Report an error