En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Fité, Francesc 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The generalized Sato-Tate conjecture - Fité, Francesc (Author of the conference) | CIRM H

Single angle

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions[-]
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...[+]

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Galois type of an Abelian surface - Fité, Francesc (Author of the conference) | CIRM H

Single angle

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions[-]
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...[+]

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Sato-Tate axioms - Fité, Francesc (Author of the conference) | CIRM H

Single angle

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions[-]
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...[+]

11M50 ; 11G10 ; 14G10 ; 14K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The main result of the talk by X. Guitart in this conference classifies the 92 geometric endomorphism algebras that arise among geometrically split abelian surfaces defined over $\mathbb{Q}$. In this talk, we will explain how only 54 of them arise as geometric endomorphism algebras of Jacobians of genus 2 curves defined over $\mathbb{Q}$, and how the remaining 38 do not. In particular, we exhibit 38 abelian surfaces defined over $\mathbb{Q}$ that are not isogenous over an algebraic closure of $\mathbb{Q}$ to any Jacobian of a genus 2 curve defined over $\mathbb{Q}$.

This is a joint work with X. Guitart and E. Florit, that builds on examples supplied by N. Elkies and C. Ritzenthaler, and uses F. Narbonne's thesis in an essential way.[-]
The main result of the talk by X. Guitart in this conference classifies the 92 geometric endomorphism algebras that arise among geometrically split abelian surfaces defined over $\mathbb{Q}$. In this talk, we will explain how only 54 of them arise as geometric endomorphism algebras of Jacobians of genus 2 curves defined over $\mathbb{Q}$, and how the remaining 38 do not. In particular, we exhibit 38 abelian surfaces defined over $\mathbb{Q}$ ...[+]

14H40 ; 11G10 ; 14K15 ; 14K22

Bookmarks Report an error