Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A simple group is pseudofinite if and only if it is isomorphic to a (twisted) Chevalley group over a pseudofinite field. This celebrated result mostly follows from the work of Wilson in 1995 and heavily relies on the classification of finite simple groups (CFSG). It easily follows that any simple pseudofinite group $G$ is finite-dimensional. In particular, if $\operatorname{dim}(G)=3$ then $G$ is isomorphic to $\operatorname{PSL}(2, F)$ for some pseudofinite field $F$. In this talk, we describe the structures of finite-dimensional pseudofinite groups with dimension $<4$, without using CFSG. In the case $\operatorname{dim}(G)=3$ we show that either $G$ is soluble-by-finite or has a finite normal subgroup $Z$ so that $G / Z$ is a finite extension of $\operatorname{PSL}(2, F)$. This in particular implies that the classification $G \cong \operatorname{PSL}(2, F)$ from the above does not require CFSG. This is joint work with Frank Wagner.
[-]
A simple group is pseudofinite if and only if it is isomorphic to a (twisted) Chevalley group over a pseudofinite field. This celebrated result mostly follows from the work of Wilson in 1995 and heavily relies on the classification of finite simple groups (CFSG). It easily follows that any simple pseudofinite group $G$ is finite-dimensional. In particular, if $\operatorname{dim}(G)=3$ then $G$ is isomorphic to $\operatorname{PSL}(2, F)$ for some ...
[+]
03C60 ; 03C45 ; 20D05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Roth's theorem states that a subset $A$ of $\{1, \ldots, N\}$ of positive density contains a positive $N^2$-proportion of (non-trivial) three arithmetic progressions, given by pairs $(a, d)$ with $d \neq 0$ such that $a, a+d, a+2 d$ all lie in $A$. In recent breakthrough work by Kelley and Meka, the known bounds have been improved drastically. One of the core ingredients of the their proof is a version of the almost periodicity result due to Croot and Sisask. The latter has been obtained in a non-quantitative form by Conant and Pillay for amenable groups using continuous logic.
In joint work with Daniel Palacín, we will present a model-theoretic version (in classical first-order logic) of the almost-periodicity result for a general group equipped with a Keisler measure under some mild assumptions and show how to use this result to obtain a non-quantitative proof of Roth's result. One of the main ideas of the proof is an adaptation of a result of Pillay, Scanlon and Wagner on the behaviour of generic types in a definable group in a simple theory.
[-]
Roth's theorem states that a subset $A$ of $\{1, \ldots, N\}$ of positive density contains a positive $N^2$-proportion of (non-trivial) three arithmetic progressions, given by pairs $(a, d)$ with $d \neq 0$ such that $a, a+d, a+2 d$ all lie in $A$. In recent breakthrough work by Kelley and Meka, the known bounds have been improved drastically. One of the core ingredients of the their proof is a version of the almost periodicity result due to ...
[+]
03C45 ; 11B30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give an arithmetic version of Tao's algebraic regularity lemma (which was itself an improved Szemerédi regularity lemma for graphs uniformly definable in finite fields). In the arithmetic regime the objects of study are pairs $(G, D)$ where $G$ is a group and $D$ an arbitrary subset, all uniformly definable in finite fields. We obtain optimal results, namely that the algebraic regularity lemma holds for the associated bipartite graph $(G, G, E)$ where $E(x, y)$ is $x y^{-1} \in D$, witnessed by a the decomposition of $G$ into cosets of a uniformly definable small index normal subgroup $H$ of $G$.
[-]
We give an arithmetic version of Tao's algebraic regularity lemma (which was itself an improved Szemerédi regularity lemma for graphs uniformly definable in finite fields). In the arithmetic regime the objects of study are pairs $(G, D)$ where $G$ is a group and $D$ an arbitrary subset, all uniformly definable in finite fields. We obtain optimal results, namely that the algebraic regularity lemma holds for the associated bipartite graph $(G, G, ...
[+]
03C45 ; 11B30 ; 05C75
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A primitive permutation group $(X, G)$ is a group $G$ together with an action of $G$ on $X$ such that there are no nontrivial equivalence relations on $X$ preserved by $G$. An rough classification of primitive permutation groups of finite Morley rank, modeled on the O'Nan-Scott theorem for finite primitive permutation groups, has been carried out by Macpherson and Pillay and this classification was then used by Borovik and Cherlin to prove that if $(X, G)$ is a primitive permutation group of finite Morley rank, the rank of $G$ can be bounded in terms of the rank of $X$. We study the analogous situation for pseudo-finite primitive permutation groups of finite SU-rank, building both on supersimple group theory and classification results of Liebeck-Macpherson-Tent. This is joint work in progress with Ulla Karhumäki.
[-]
A primitive permutation group $(X, G)$ is a group $G$ together with an action of $G$ on $X$ such that there are no nontrivial equivalence relations on $X$ preserved by $G$. An rough classification of primitive permutation groups of finite Morley rank, modeled on the O'Nan-Scott theorem for finite primitive permutation groups, has been carried out by Macpherson and Pillay and this classification was then used by Borovik and Cherlin to prove that ...
[+]
03C60 ; 03C45
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
(joint work with Ehud Hrushovski, Jinhe Ye and Tingxiang Zou)
We prove Lang-Weil type bounds for the number of rational points of difference varieties over finite difference fields, in terms of the transformal dimension of the variety and assuming the existence of a smooth rational point. It follows that in (certain) non-principle ultraproducts of finite difference fields the course dimension of a quantifier free type equals its transformal tran-scendence degree.
The proof uses a strong form of the Lang-Weil estimates and, as key ingredi-ent to obtain equidimensional Frobenius specializations, the recent work of Dor and Hrushovski on the non-standard Frobenius acting on an algebraically closed non-trivially valued field, in particular the pure stable embeddedness of the residue difference field in this context.
[-]
(joint work with Ehud Hrushovski, Jinhe Ye and Tingxiang Zou)
We prove Lang-Weil type bounds for the number of rational points of difference varieties over finite difference fields, in terms of the transformal dimension of the variety and assuming the existence of a smooth rational point. It follows that in (certain) non-principle ultraproducts of finite difference fields the course dimension of a quantifier free type equals its transformal ...
[+]
11U09 ; 03C13 ; 11G25 ; 03C20 ; 03C60 ; 12L12
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
In recent papers by Alon et al. and Fox et al. it is demonstrated that families of graphs with a semialgebraic edge relation of bounded complexity have strong regularity properties and can be decomposed into very homogeneous semialgebraic pieces up to a small error (typical example is the incidence relation between points and lines on a real plane, or higher dimensional analogues). We show that in fact the theory can be developed for families of graphs definable in a structure satisfying a certain model theoretic property called distality, with respect to a large class of measures (this applies in particular to graphs definable in arbitrary o-minimal theories and in p-adics). (Joint work with Sergei Starchenko.)
[-]
In recent papers by Alon et al. and Fox et al. it is demonstrated that families of graphs with a semialgebraic edge relation of bounded complexity have strong regularity properties and can be decomposed into very homogeneous semialgebraic pieces up to a small error (typical example is the incidence relation between points and lines on a real plane, or higher dimensional analogues). We show that in fact the theory can be developed for families of ...
[+]
03C45 ; 03C60 ; 03C64
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
If CCM denotes the theory of compact complex spaces in the langauge of complex-analytic sets, then the theory of models of CCM equipped with an automorphism has a model companion, denoted by CCMA. The relationship to meromorphic dynamical systems is the same as that of ACFA to rational dynamical systems. I will discuss recent joint work with Martin Bays and Martin Hils that begins a systematic study of CCMA as an expansion of ACFA. Particular topics we consider include: stable embeddedness, imaginaries, and the Zilber dichotomy.
[-]
If CCM denotes the theory of compact complex spaces in the langauge of complex-analytic sets, then the theory of models of CCM equipped with an automorphism has a model companion, denoted by CCMA. The relationship to meromorphic dynamical systems is the same as that of ACFA to rational dynamical systems. I will discuss recent joint work with Martin Bays and Martin Hils that begins a systematic study of CCMA as an expansion of ACFA. Particular ...
[+]
03C60 ; 03C45 ; 03C65 ; 32Jxx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the past few years, conjectures have been made and partial results achieved on unlikely intersections in complex dynamics, following the program initiated by Baker-DeMarco. I will explain their dynamical generalization of the famous André-Oort conjecture on CM points in moduli spaces of abelian varieties. Ghioca, Nguyen, Ye, and myself recently proved the first complete case of this conjecture, for pairs of unicritical polynomials, and I will discuss our result and the connection to invariant subvarieties of $P1 \times P1$, and the structure of the Mandelbrot set.
[-]
In the past few years, conjectures have been made and partial results achieved on unlikely intersections in complex dynamics, following the program initiated by Baker-DeMarco. I will explain their dynamical generalization of the famous André-Oort conjecture on CM points in moduli spaces of abelian varieties. Ghioca, Nguyen, Ye, and myself recently proved the first complete case of this conjecture, for pairs of unicritical polynomials, and I will ...
[+]
37F50 ; 37F05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Difference algebraic groups, i.e, groups defined by algebraic difference equations occur naturally as the Galois groups of linear differential or difference equations depending on a discrete parameter. If the linear equation has a full set of algebraic solutions, the corresponding Galois group is an étale difference algebraic group. Like étale algebraic groups can be described as finite groups with a continuous action of the absolute Galois group of the base field, étale difference algebraic groups can be described as certain profinite groups with some extra structure. I will present a decomposition theorem for étale difference algebraic groups, which shows that any étale difference algebraic group can be build from étale algebraic groups and finite groups equipped with an endomorphism.
[-]
Difference algebraic groups, i.e, groups defined by algebraic difference equations occur naturally as the Galois groups of linear differential or difference equations depending on a discrete parameter. If the linear equation has a full set of algebraic solutions, the corresponding Galois group is an étale difference algebraic group. Like étale algebraic groups can be described as finite groups with a continuous action of the absolute Galois ...
[+]
12H10 ; 14L15