En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents He, Tongmu 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the representation comes from a $Q_{p}$-representation of a $p$-adic Lie group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen-Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.[-]
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the ...[+]

11F80 ; 14F35 ; 14F30

Sélection Signaler une erreur