En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bridgeland, Tom 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wall-crossing for Donaldson-Thomas invariants - Bridgeland, Tom (Auteur de la Conférence) | CIRM H

Post-edited

There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of connections on the punctured disc, where the structure group is the infinite-dimensional group of symplectic automorphisms of an algebraic torus. I will not assume any knowledge of stability conditions, DT invariants etc.[-]
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of ...[+]

14F05 ; 18E30 ; 14D20 ; 81T20 ; 32G15

Sélection Signaler une erreur