En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Thompson, Daniel J. 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Beyond Bowen specification property - lecture 3 - Thompson, Daniel J. (Auteur de la Conférence) | CIRM H

Multi angle

These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Beyond Bowen specification property - lecture 1 - Thompson, Daniel J. (Auteur de la Conférence) | CIRM H

Multi angle

These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Beyond Bowen specification property - lecture 2 - Thompson, Daniel J. (Auteur de la Conférence) | CIRM H

Multi angle

These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...[+]

37D35 ; 37D40 ; 37C40 ; 37D25

Sélection Signaler une erreur