En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Dolbeault, Jean 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral analysis.[-]
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral ...[+]

82C40 ; 35H10 ; 35P15 ; 35Q84 ; 35R09 ; 47G20 ; 82C21 ; 82D10 ; 82D37 ; 76P05 ; 35K65 ; 35Q84 ; 46E35 ; 35K55 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$L^2$ Hypocoercivity - Dolbeault, Jean (Auteur de la Conférence) | CIRM H

Multi angle

The purpose of the $L^2$ hypocoercivity method is to obtain rates for solutions of linear kinetic equations without regularizing effects, in asymptotic regimes. Initially intended for systems with confinement in position space and simple local equilibria, the method has been extended to various local equilibria in velocities and non-compact situations in positions. It is also flexible enough to include non-local transport terms associated with Poisson coupling. The lecture will be devoted to a review of some recent results.[-]
The purpose of the $L^2$ hypocoercivity method is to obtain rates for solutions of linear kinetic equations without regularizing effects, in asymptotic regimes. Initially intended for systems with confinement in position space and simple local equilibria, the method has been extended to various local equilibria in velocities and non-compact situations in positions. It is also flexible enough to include non-local transport terms associated with ...[+]

82C40

Sélection Signaler une erreur