En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 2082 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Twistor theory for LQG - Eastwood, Michael (Auteur de la Conférence) | CIRM H

Post-edited

Twistor Theory was proposed in the late 1960s by Roger Penrose as a potential geometric unification of general relativity and quantum mechanics. During the past 50 years, there have been many mathematical advances and achievements in twistor theory. In physics, however, there are aspirations yet to be realised. Twistor Theory and Loop Quantum Gravity (LQG) share a common background. Their aims are very much related. Is there more to it? This talk will sketch the geometry and symmetry behind twistor theory with the hope that links with LQG can be usefully strengthened. We believe there is something significant going on here: what could it be?[-]
Twistor Theory was proposed in the late 1960s by Roger Penrose as a potential geometric unification of general relativity and quantum mechanics. During the past 50 years, there have been many mathematical advances and achievements in twistor theory. In physics, however, there are aspirations yet to be realised. Twistor Theory and Loop Quantum Gravity (LQG) share a common background. Their aims are very much related. Is there more to it? This ...[+]

32L25 ; 53A30 ; 53C28

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Twist and loop - Rovelli, Carlo (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct Skyrme fields from holonomy of the spin connection of multi-Taub-NUT instantons with the centres positioned along a line in R3. The domain of our Skyrme fields is the space of orbits of the axial symmetry of the multi-Taub-NUT instantons. We obtain an expression for the induced Einstein-Weyl metric on the space and its associated solution to the $SU(\infty )$-Toda equation.

35Q75 ; 81V17 ; 81T13 ; 81Q80 ; 35C08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur