En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Fourier coefficients of meromorphic Jacobi forms

Bookmarks Report an error
Multi angle
Authors : Zwegers, Sander (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Fourier coefficients of meromorphic Jacobi forms show up in, for example, the study of mock theta functions, quantum black holes and Kac-Wakimoto characters. In the case of positive index, it was previously shown that they are the holomorphic parts of vector-valued almost harmonic Maass forms. In this talk, we give an alternative characterization of these objects by applying the Maass lowering operator to the completions of the Fourier coefficients. Further, we'll also describe the relation of Fourier coefficients of negative index Jacobi forms to partial theta functions.

MSC Codes :
11F27 - Theta series; Weil representation; theta correspondences
11F30 - Fourier coefficients of automorphic forms

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/06/15
    Conference Date : 27/05/15
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:22
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-05-27_Zwegers.mp4

Information on the Event

Event Title : Automorphic forms: advances and applications / Formes automorphes: avancées et applications
Event Organizers : Bringmann, Kathrin ; Lovejoy, Jérémy ; Richter, Olav
Dates : 25/05/15 - 29/05/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1108.html

Citation Data

DOI : 10.24350/CIRM.V.18769603
Cite this video as: Zwegers, Sander (2015). Fourier coefficients of meromorphic Jacobi forms. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18769603
URI : http://dx.doi.org/10.24350/CIRM.V.18769603

Bibliography



Bookmarks Report an error