En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$S$-adic sequences: a bridge between dynamics, arithmetic, and geometry

Bookmarks Report an error
Multi angle
Authors : Thuswaldner, Jörg (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy's program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy's program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin's idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.

MSC Codes :
11B83 - Special sequences and polynomials
11K50 - Metric theory of continued fractions
37B10 - Symbolic dynamics
52C23 - Quasicrystals, aperiodic tilings
53D25 - Geodesic flows

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 28/11/2017
    Conference Date : 21/11/2017
    Subseries : Research School
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory ; Dynamical Systems & ODE ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:38:52
    Targeted Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-11-21_Thuswaldner.mp4

Information on the Event

Event Title : Jean-Morlet chair - Research school: Tiling dynamical system / Chaire Jean-Morlet - École de recherche : Pavages et systèmes dynamiques
Event Organizers : Akiyama, Shigeki ; Arnoux, Pierre
Dates : 20/11/2017 - 24/11/2017
Event Year : 2017
Event URL : https://www.chairejeanmorlet.com/1720.html

Citation Data

DOI : 10.24350/CIRM.V.19248803
Cite this video as: Thuswaldner, Jörg (2017). $S$-adic sequences: a bridge between dynamics, arithmetic, and geometry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19248803
URI : http://dx.doi.org/10.24350/CIRM.V.19248803

See Also

Bibliography



Bookmarks Report an error