En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$S$-adic sequences: a bridge between dynamics, arithmetic, and geometry

Sélection Signaler une erreur
Multi angle
Auteurs : Thuswaldner, Jörg (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy's program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy's program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin's idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.

Codes MSC :
11B83 - Special sequences and polynomials
11K50 - Metric theory of continued fractions
37B10 - Symbolic dynamics
52C23 - Quasicrystals, aperiodic tilings
53D25 - Geodesic flows

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 28/11/2017
    Date de Captation : 21/11/2017
    Collection : Ecoles de recherche
    Sous Collection : Research School
    Catégorie arXiv : Number Theory
    Domaine(s) : Théorie des Nombres ; Systèmes Dynamiques & EDO ; Géométrie
    Format : MP4 (.mp4) - HD
    Durée : 01:38:52
    Audience : Chercheurs ; Etudiants Science Cycle 2
    Download : https://videos.cirm-math.fr/2017-11-21_Thuswaldner.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet chair - Research school: Tiling dynamical system / Chaire Jean-Morlet - École de recherche : Pavages et systèmes dynamiques
Organisateurs de la Rencontre : Akiyama, Shigeki ; Arnoux, Pierre
Dates : 20/11/2017 - 24/11/2017
Année de la rencontre : 2017
URL de la Rencontre : https://www.chairejeanmorlet.com/1720.html

Données de citation

DOI : 10.24350/CIRM.V.19248803
Citer cette vidéo: Thuswaldner, Jörg (2017). $S$-adic sequences: a bridge between dynamics, arithmetic, and geometry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19248803
URI : http://dx.doi.org/10.24350/CIRM.V.19248803

Voir Aussi

Bibliographie



Sélection Signaler une erreur