En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Local and global statistics for point sequences

Bookmarks Report an error
Virtualconference
Authors : Aistleitner, Christoph (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We recall some classical results for uniform distribution modulo one, and relate them with their counterparts in the "localized" setting of correlation functions and gap statistics. We discuss the difficulties arising from the localized setting, with a particular emphasis on questions concerning the almost everywhere behavior of parametric sequences. It turns out that in this metric setting one is naturally led to a Diophantine counting problem, which has interesting connections to additive combinatorics and to moment bounds for the Riemann zeta function.

Keywords : uniform distribution; pair correlation

MSC Codes :
11J54 - Small fractional parts of polynomials and generalizations
11J71 - Distribution modulo one
11K06 - General theory of distribution modulo 1

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Workshop: Discrepancy Theory and Applications - Part 1 / Chaire Jean-Morlet 2020 - Workshop : Théorie de la discrépance et applications - Part 1
Event Organizers : Madritsch, Manfred ; Rivat, Joël ; Tichy, Robert
Dates : 30/11/2020 - 01/12/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/2257virtual.html

Citation Data

DOI : 10.24350/CIRM.V.19681203
Cite this video as: Aistleitner, Christoph (2020). Local and global statistics for point sequences. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19681203
URI : http://dx.doi.org/10.24350/CIRM.V.19681203

See Also

Bibliography



Imagette Video

Bookmarks Report an error