En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Large stochastic systems of interacting particles

Bookmarks Report an error
Virtualconference
Authors : Jabin, Pierre-Emmanuel (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We propose a modulated free energy which combines of the method previously developed by the speaker together with the modulated energy introduced by S. Serfaty. This modulated free energy may be understood as introducing appropriate weights in the relative entropy to cancel the more singular terms involving the divergence of the flow. This modulated free energy allows to treat singular interactions of gradient-flow type and allows potentials with large smooth part, small attractive singular part and large repulsive singular part. As an example, a full rigorous derivation (with quantitative estimates) of some chemotaxis models, such as Patlak-Keller Segel system in the subcritical regimes, is obtained. This is joint work with D. Bresch and Z. Wang.

Keywords : many-particle systems; large deviation inequalities; singular attractive gradient flow

MSC Codes :
60F10 - Large deviations
60H30 - Applications of stochastic analysis (to PDE, etc.)
82C22 - Interacting particle systems
35Q70 - PDEs in connection with mechanics of particles and systems

Additional resources :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Pierre-Emmanuel_JABIN.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/04/2021
    Conference Date : 23/03/2021
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Mathematical Physics
    Mathematical Area(s) : PDE ; Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:35:54
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-23_Jabin.mp4

Information on the Event

Event Title : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Event Organizers : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Event Year : 2021
Event URL : https://www.chairejeanmorlet.com/2355.html

Citation Data

DOI : 10.24350/CIRM.V.19734403
Cite this video as: Jabin, Pierre-Emmanuel (2021). Large stochastic systems of interacting particles. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19734403
URI : http://dx.doi.org/10.24350/CIRM.V.19734403

See Also

Bibliography

  • BRESCH, Didier, JABIN, Pierre-Emmanuel, et WANG, Zhenfu. On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak–Keller–Segel model. Comptes Rendus Mathematique, 2019, vol. 357, no 9, p. 708-720. - https://doi.org/10.1016/j.crma.2019.09.007

  • JABIN, Pierre-Emmanuel et WANG, Zhenfu. Quantitative estimates of propagation of chaos for stochastic systems with $W^{-1,\infty}$ kernels. Inventiones mathematicae, 2018, vol. 214, no 1, p. 523-591. - https://doi.org/10.1007/s00222-018-0808-y

  • SERFATY, Sylvia, et al. Mean field limit for Coulomb-type flows. Duke Mathematical Journal, 2020, vol. 169, no 15, p. 2887-2935. - http://dx.doi.org/10.1215/00127094-2020-0019



Bookmarks Report an error