En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Monte Carlo guided Diffusion for Bayesian linear inverse problems

Bookmarks Report an error
Multi angle
Authors : Le Corff, Sylvain (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined in the SGM to formulate recovery in a Bayesian framework as a Feynman–Kac model adapted from the forward diffusion model used to construct score-based diffusion. To solve this Feynman–Kac problem, we propose the use of Sequential Monte Carlo methods. The proposed algorithm, MCGdiff, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems.

Keywords : Bayesian inverse problem; diffusion models; sequential Monte Carlo

MSC Codes :
62F15 - Bayesian inference
65C05 - Monte Carlo methods
65C60 - Computational problems in statistics

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 27/11/2023
    Conference Date : 31/10/2023
    Subseries : Research School
    arXiv category : Machine Learning ; Statistics ; Methodology
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:36:33
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-10-31_le_corff.mp4

Information on the Event

Event Title : Autumn school in Bayesian Statistics / École d'automne en statistique bayésienne
Event Organizers : Arbel, Julyan ; Etienne, Marie-Pierre ; Filippi, Sarah ; Kon Kam King, Guillaume ; Ryder, Robin ; Ancelet, Sophie ; Bardenet, Rémi ; Bonnet, Anna ; Jacob, Pierre
Dates : 30/10/2023 - 03/11/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2881.html

Citation Data

DOI : 10.24350/CIRM.V.20107003
Cite this video as: Le Corff, Sylvain (2023). Monte Carlo guided Diffusion for Bayesian linear inverse problems. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20107003
URI : http://dx.doi.org/10.24350/CIRM.V.20107003

See Also

Bibliography

  • CARDOSO, Gabriel, IDRISSI, Yazid Janati El, CORFF, Sylvain Le, et al. Monte Carlo guided Diffusion for Bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023. - https://arxiv.org/abs/2308.07983



Imagette Video

Bookmarks Report an error