En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$k$-sum free sets in $[0,1]$

Sélection Signaler une erreur
Multi angle
Auteurs : de Roton, Anne (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $k > 2$ be a real number. We inquire into the following question : what is the maximal size (inner Lebesque measure) and the form of a set avoiding solutions to the linear equation $x + y = kz$ ? This problem was used for $k$ an integer larger than 4 to guess the density and the form of a corresponding maximal set of positive integers less than $N$. Nevertheless, in the case $k = 3$, the discrete and the continuous setting happen to be very different. Although the structure of maximal sets in the continuous setting is quite easy to describe for $k$ far enough from 2, it is more difficult to handle as $k$ comes closer to 2. Joint work with Alain Plagne.

Codes MSC :
05D05 - Extremal set theory
11Pxx - Additive number theory; partitions

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 06/10/15
    Date de Captation : 10/09/15
    Collection : Exposés de recherche
    Sous Collection : Research talks
    Catégorie arXiv : Combinatorics ; Number Theory
    Domaine(s) : Combinatoires ; Théorie des Nombres
    Format : MP4 (.mp4) - HD
    Durée : 00:34:56
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2015-09-10_de_Roton.mp4

Informations sur la Rencontre

Nom de la Rencontre : Additive combinatorics in Marseille / Combinatoire additive à Marseille
Organisateurs de la Rencontre : Hennecart, François ; Plagne, Alain ; Szemerédi, Endre
Dates : 07/09/15 - 11/09/15
Année de la rencontre : 2015
URL de la Rencontre : http://conferences.cirm-math.fr/1107.html

Données de citation

DOI : 10.24350/CIRM.V.18829103
Citer cette vidéo: de Roton, Anne (2015). $k$-sum free sets in $[0,1]$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18829103
URI : http://dx.doi.org/10.24350/CIRM.V.18829103

Bibliographie



Sélection Signaler une erreur