En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Bayesian computation with INLA

Sélection Signaler une erreur
Multi angle
Auteurs : Rue, Havard (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : This talk focuses on the estimation of the distribution of unobserved nodes in large random graphs from the observation of very few edges. These graphs naturally model tournaments involving a large number of players (the nodes) where the ability to win of each player is unknown. The players are only partially observed through discrete valued scores (edges) describing the results of contests between players. In this very sparse setting, we present the first nonasymptotic risk bounds for maximum likelihood estimators (MLE) of the unknown distribution of the nodes. The proof relies on the construction of a graphical model encoding conditional dependencies that is extremely efficient to study n-regular graphs obtained using a round-robin scheduling. This graphical model allows to prove geometric loss of memory properties and deduce the asymptotic behavior of the likelihood function. Following a classical construction in learning theory, the asymptotic likelihood is used to define a measure of performance for the MLE. Risk bounds for the MLE are finally obtained by subgaussian deviation results derived from concentration inequalities for Markov chains applied to our graphical model.

Mots-Clés : Bayesian computation; Integrated Nested Laplace Approximation (INLA); graphs model; maximum likelihood estimators (MLE)

Codes MSC :
62C10 - Bayesian problems; characterization of Bayes procedures
62F15 - Bayesian inference
65C40 - Computational Markov chains (numerical analysis)
65C60 - Computational problems in statistics

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 01/11/2018
    Date de Captation : 24/10/2018
    Sous Collection : Research School
    Catégorie arXiv : Computation ; Methodology
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 01:46:08
    Audience : Chercheurs ; Etudiants Science Cycle 2
    Download : https://videos.cirm-math.fr/2018-10-24_Rue.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet chair: Masterclass in Bayesian statistics / Chaire Jean-Morlet : École de statistique bayésienne
Organisateurs de la Rencontre : Chopin, Nicolas ; Mengersen, Kerrie ; Pommeret, Denys ; Pudlo, Pierre ; Robert, Christian P. ; Ryder, Robin
Dates : 22/10/2018 - 26/10/2018
Année de la rencontre : 2018
URL de la Rencontre : https://www.chairejeanmorlet.com/1854.html

Données de citation

DOI : 10.24350/CIRM.V.19468403
Citer cette vidéo: Rue, Havard (2018). Bayesian computation with INLA. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19468403
URI : http://dx.doi.org/10.24350/CIRM.V.19468403

Voir Aussi

Bibliographie



Sélection Signaler une erreur