En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

​Levy diffusion of dispersing billiards with flat points

Sélection Signaler une erreur
Multi angle
Auteurs : Zhang, Hong-Kun (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : ​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène.

Keywords : ​chaotic billiards; Lorentz gas; dispersing billiards; rates of mixing; flat points; Lévy process; Skorohod topology

Codes MSC :
37A25 - Ergodicity, mixing, rates of mixing
37D25 - Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D50 - Hyperbolic systems with singularities (billiards, etc.)
60F05 - Central limit and other weak theorems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 15/11/2018
    Date de captation : 31/10/2018
    Sous collection : Research talks
    arXiv category : Dynamical Systems ; Probability
    Domaine : Dynamical Systems & ODE ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:52:53
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-10-31_Zhang.mp4

Informations sur la Rencontre

Nom de la rencontre : Probabilistic limit theorems for dynamical systems / Théorèmes limites probabilistes pour les systèmes dynamiques
Organisateurs de la rencontre : Melbourne, Ian ; Pène, Françoise ; Volny, Dalibor
Dates : 29/10/2018 - 02/11/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1997.html

Données de citation

DOI : 10.24350/CIRM.V.19471903
Citer cette vidéo: Zhang, Hong-Kun (2018). ​Levy diffusion of dispersing billiards with flat points. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19471903
URI : http://dx.doi.org/10.24350/CIRM.V.19471903

Voir aussi

Bibliographie

  • ​Chernov, N., & Zhang, H.-K. (2005). A family of chaotic billiards with variable mixing rates. Stochastics and Dynamics, 5(4), 535-553 - https://doi.org/10.1142/S0219493705001572

  • Jung, P., & Zhang, H.-K. (2018). Stable laws for chaotic billiards with cusps at flat points. - https://arxiv.org/abs/1611.00879

  • Jung, P., Pène, F., & Zhang, H.-K. (2018). Convergence to $\alpha$-stable Lévy motion for chaotic billiards with several cusps at flat points. - https://arxiv.org/abs/1809.08021

  • Melbourne, I., & Zweimüller, R. (2015). Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 51(2), 545-556 - https://doi.org/10.1214/13-AIHP586

  • Mohr, L., & Zhang, H.-K. (2017). Supperdiffusions for certain nonuniformly hyperbolic systems. - https://arxiv.org/abs/1709.00528

  • Pène, F., & Saussol, B. (2018). Spatio-temporal Poisson processes for visits to small sets. - https://arxiv.org/abs/1803.06865

  • Tyran-Kamińska, M. (2010). Weak convergence to Lévy stable processes in dynamical systems. Stochastics and Dynamics, 10(2), 263-289 - https://doi.org/10.1142/S0219493710002942

  • Zhang, H.-K. (2017). ​Decay of correlations for billiards with flat points I: channel effects. In A.M. Blokh, L.A. Bunimovich, P.H. Jung, L.G. Oversteegen, & Y.G. Sina (Eds.), Dynamical Systems, Ergodic Theory, and Probability (pp. 239-286). Providence, RI: American Mathematical Society - https://doi.org/10.1090/conm/698/13983

  • Zhang, H.-K. (2017). ​Decay of correlations for billiards with flat points II: cusps effect. In A.M. Blokh, L.A. Bunimovich, P.H. Jung, L.G. Oversteegen, & Y.G. Sina (Eds.), Dynamical Systems, Ergodic Theory, and Probability (pp. 287-316). Providence, RI: American Mathematical Society - https://doi.org/10.1090/conm/698/13983



Sélection Signaler une erreur