En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The speed of a second class particle in the ASEP

Sélection Signaler une erreur
Multi angle
Auteurs : Saenz, Axel (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles are blocked in their movement by all other particles, while the first class particles are only blocked by other first class particles. We consider the step initial conditions so that all non-negative integer positions are occupied and all other positions are vacant at time zero. Moreover, we take exactly L second class particles to be located at the very front of the configuration at time zero. Then, using recent results of Tracy-Widom (2017) and Borodin-Wheeler (2018), we compute the asymptotic speed of the leftmost second class particle.
This is joint work with Promit Ghosal (Columbia University) and Ethan Zell (University of Virginia) in arXiv:1903.09615.

Codes MSC :
34E20 - Singular perturbations, turning point theory, WKB methods
60B20 - Random matrices (probabilistic aspects)
34M50 - nverse problems (Riemann-Hilbert, inverse differential Galois, etc.)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2104/Slides/Presentation(AxelSaenz).pdf

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 09/05/2019
    Date de captation : 11/04/2019
    Sous collection : Research talks
    arXiv category : Probability ; Mathematical Physics
    Domaine : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:41:20
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-11_Saenz.mp4

Informations sur la Rencontre

Nom de la rencontre : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Organisateurs de la rencontre : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Année de la rencontre : 2019
URL Congrès : https://www.chairejeanmorlet.com/2104.html

Données de citation

DOI : 10.24350/CIRM.V.19517503
Citer cette vidéo: Saenz, Axel (2019). The speed of a second class particle in the ASEP. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19517503
URI : http://dx.doi.org/10.24350/CIRM.V.19517503

Voir aussi

Bibliographie

  • Ghosal, P., Saenz, A., & Zell, E. C. (2019). Limiting speed of a second class particle in ASEP. arXiv preprint arXiv:1903.09615. - https://arxiv.org/abs/1903.09615

  • Tracy, C. A., & Widom, H. (2017). Blocks in the asymmetric simple exclusion process. Journal of Mathematical Physics, 58(12), 123302. - https://arxiv.org/abs/1711.08094

  • Borodin, A., & Wheeler, M. (2018). Coloured stochastic vertex models and their spectral theory. arXiv preprint arXiv:1808.01866. - https://arxiv.org/abs/1808.01866



Sélection Signaler une erreur