Auteurs : Janson, Lucas (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Many modern applications seek to understand the relationship between an outcome variable of interest and a high-dimensional set of covariates. Often the first question asked is which covariates are important in this relationship, but the immediate next question, which in fact subsumes the first, is \emph{how} important each covariate is in this relationship. In parametric regression this question is answered through confidence intervals on the parameters. But without making substantial assumptions about the relationship between the outcome and the covariates, it is unclear even how to \emph{measure} variable importance, and for most sensible choices even less clear how to provide inference for it under reasonable conditions. In this paper we propose \emph{floodgate}, a novel method to provide asymptotic inference for a scalar measure of variable importance which we argue has universal appeal, while assuming nothing but moment bounds about the relationship between the outcome and the covariates. We take a model-X approach and thus assume the covariate distribution is known, but extend floodgate to the setting that only a \emph{model} for the covariate distribution is known and also quantify its robustness to violations of the modeling assumptions. We demonstrate floodgate's performance through extensive simulations and apply it to data from the UK Biobank to quantify the effects of genetic mutations on traits of interest.
Keywords : Variable importance; effect size; model-X; heterogeneous treatment effects; heritability
Codes MSC :
62G15
- Tolerance and confidence regions
62G20
- Nonparametric asymptotic efficiency
Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/janson.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2 Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL Congrès : https://www.cirm-math.com/cirm-virtual-...
DOI : 10.24350/CIRM.V.19641303
Citer cette vidéo:
Janson, Lucas (2020). Floodgate: inference for model-free variable importance. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19641303
URI : http://dx.doi.org/10.24350/CIRM.V.19641303
|
Voir aussi
-
[Virtualconference]
Experimenting in equilibrium
/ Auteur de la Conférence Wager, Stefan.
-
[Virtualconference]
Structure learning for CTBN's
/ Auteur de la Conférence Miasojedow, Błażej.
-
[Virtualconference]
The price of competition: effect size heterogeneity matters in high dimensions!
/ Auteur de la Conférence Wang, Hua.
-
[Virtualconference]
Scaling of scoring rules
/ Auteur de la Conférence Wallin, Jonas.
-
[Virtualconference]
Hierarchical bayes modeling for large-scale inference
/ Auteur de la Conférence Yekutieli, Daniel.
-
[Virtualconference]
Change: detection, estimation, segmentation
/ Auteur de la Conférence Siegmund, David.
-
[Virtualconference]
High-dimensional, multiscale online changepoint detection
/ Auteur de la Conférence Samworth, Richard.
-
[Virtualconference]
The smoothed multivariate square-root Lasso: an optimization lens on concomitant estimation
/ Auteur de la Conférence Salmon, Joseph.
-
[Virtualconference]
Knockoff genotypes: value in counterfeit
/ Auteur de la Conférence Sabatti, Chiara.
-
[Virtualconference]
Optimal and maximin procedures for multiple testing problems
/ Auteur de la Conférence Rosset, Saharon.
-
[Virtualconference]
Sparse multiple testing: can one estimate the null distribution ?
/ Auteur de la Conférence Roquain, Etienne.
-
[Virtualconference]
Bayesian spatial adaptation
/ Auteur de la Conférence Rockova, Veronika.
-
[Virtualconference]
Universal inference using the split likelihood ratio test
/ Auteur de la Conférence Ramdas, Aaditya K..
-
[Virtualconference]
How to estimate a density on a spider web ?
/ Auteur de la Conférence Picard, Dominique.
-
[Virtualconference]
Post hoc bounds on false positives using reference families
/ Auteur de la Conférence Neuvial, Pierre.
-
[Virtualconference]
Quasi logistic distributions and Gaussian scale mixing
/ Auteur de la Conférence Letac, Gerard.
-
[Virtualconference]
Shrinkage estimation of mean for complex multivariate normal distribution with unknown covariance when p > n
/ Auteur de la Conférence Konno, Yoshihiko.
-
[Virtualconference]
Treatment effect estimation with missing attributes
/ Auteur de la Conférence Josse, Julie.
-
[Virtualconference]
On Cholesky structures on real symmetric matrices and their applications
/ Auteur de la Conférence Ishi, Hideyuki.
-
[Virtualconference]
Optimal control of false discovery criteria in the general two-group model
/ Auteur de la Conférence Heller, Ruth.
-
[Virtualconference]
Isotonic Distributional Regression (IDR) - leveraging monotonicity, uniquely so!
/ Auteur de la Conférence Gneiting, Tilmann.
-
[Virtualconference]
De-biasing arbitrary convex regularizers and asymptotic normality
/ Auteur de la Conférence Bellec, Pierre C..
-
[Virtualconference]
Consistent model selection criteria and goodness-of-fit test for common time series models
/ Auteur de la Conférence Bardet, Jean-Marc.
-
[Virtualconference]
High-dimensional classification by sparse logistic regression
/ Auteur de la Conférence Abramovich, Felix.
Bibliographie
- BERK, Richard, BROWN, Lawrence, BUJA, Andreas, et al. Valid post-selection inference. The Annals of Statistics, 2013, vol. 41, no 2, p. 802-837. - http://dx.doi.org/10.1214/12-AOS1077
- BÜHLMANN, Peter, et al. Statistical significance in high-dimensional linear models. Bernoulli, 2013, vol. 19, no 4, p. 1212-1242. - http://dx.doi.org/10.3150/12-BEJSP11
- BÜHLMANN, Peter, VAN DE GEER, Sara, et al. High-dimensional inference in misspecified linear models. Electronic Journal of Statistics, 2015, vol. 9, no 1, p. 1449-1473. - http://dx.doi.org/10.1214/15-EJS1041
- BUJA, Andreas, BERK, Richard A., BROWN, Lawrence D., et al. Models as approximations-a conspiracy of random regressors and model deviations against classical inference in regression. Statistical Science, 2015, p. 1. - https://crim.sas.upenn.edu/sites/default/files/2015-9.0_Berk_ModelsAsApproximations%281%29.pdf
- BUJA, Andeas et BROWN, Larry. Discussion:" a significance test for the lasso". The Annals of Statistics, 2014, vol. 42, no 2, p. 509-517. - http://dx.doi.org/10.1214/14-AOS1175F
- BUJA, Andreas, BROWN, Lawrence, BERK, Richard, et al. Models as Approximations I: Consequences Illustrated with Linear Regression. Statistical Science, 2019, vol. 34, no 4, p. 523-544. - http://dx.doi.org/10.1214/18-STS693