En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Symplectic model reduction of Hamiltonian systems on nonlinear manifolds

Bookmarks Report an error
Multi angle
Authors : Glas, Silke (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Classical model reduction techniques project the governing equations onto linear subspaces of the high-dimensional state-space. However, for problems with slowly decaying Kolmogorov-n-widths such as certain transport-dominated problems, classical linear-subspace reduced order models (ROMs) of low dimension might yield inaccurate results. Thus, the reduced space needs to be extended to more general nonlinear manifolds. Moreover, as we are dealing with Hamiltonian systems, it is crucial that the underlying symplectic structure is preserved in the reduced model.
To the best of our knowledge, existing literatures addresses either model reduction on manifolds or symplectic model reduction for Hamiltonian systems, but not their combination. In this talk, we bridge the two aforementioned approaches by providing a novel projection technique called symplectic manifold Galerkin, which projects the Hamiltonian system onto a nonlinear symplectic trial manifold such that the reduced model is again a Hamiltonian system. We derive analytical results such as stability, energy-preservation and a rigorous a-posteriori error bound. Moreover, we construct a weakly symplectic convolutional autoencoder in order to computationally approximate the nonlinear symplectic trial manifold. We numerically demonstrate the ability of the method to outperform structure-preserving linear subspace ROMs results for a linear wave equation for which a slow decay of the Kolmogorov-n-width can be observed.

Keywords : Symplectic model reduction; Hamiltonian systems; energy preservation; stability; nonlinear dimensionality reduction; autoencoders

MSC Codes :
34C20 - Transformation and reduction of equations and systems, normal forms
37M15 - Symplectic integrators
65P10 - Hamiltonian systems including symplectic integrators
37J25 - Stability problems
37N30 - Dynamical systems in numerical analysis

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/05/2022
    Conference Date : 19/04/2022
    Subseries : Research talks
    arXiv category : Numerical Analysis
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:40:03
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-04-19_Glas.mp4

Information on the Event

Event Title : Energy-Based Modeling, Simulation, and Control of Complex Constrained Multiphysical Systems / Modélisation structurée, intégration géométrique et commande de systèmes multiphysiques contraints
Event Organizers : Kotyczka, Paul ; Le Gorrec, Yann ; Matignon, Denis ; Scherpen, Jacquelien ; Unger, Benjamin
Dates : 18/04/2022 - 22/04/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2560.html

Citation Data

DOI : 10.24350/CIRM.V.19908303
Cite this video as: Glas, Silke (2022). Symplectic model reduction of Hamiltonian systems on nonlinear manifolds. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19908303
URI : http://dx.doi.org/10.24350/CIRM.V.19908303

See Also

Bibliography

  • BUCHFINK, Patrick, GLAS, Silke, et HAASDONK, Bernard. Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. arXiv preprint arXiv:2112.10815, 2021. - https://arxiv.org/abs/2112.10815



Imagette Video

Bookmarks Report an error