En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Localization of eigenfunctions via an effective potential

Bookmarks Report an error
Multi angle
Authors : Jerison, David (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In earlier work, Filoche and Mayboroda introduced the function $u$ solving $Lu = 1$, and showed numerically that it strongly reflects this localization. In this talk, we deepen the connection between the eigenfunctions and this landscape function $u$ by proving that its reciprocal $1/u$ acts as an effective potential. The effective potential governs the exponential decay of the eigenfunctions of the system and delivers information on the distribution of eigenvalues near the bottom of the spectrum.

MSC Codes :
35P20 - Asymptotic distribution of eigenvalues and eigenfunctions for PD operators
47A75 - Eigenvalue problems (linear operators)
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis
81Vxx - Applications of quantum theory to specific physical systems

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/10/2017
    Conference Date : 05/10/2017
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : Mathematical Physics ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:29
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-10-05_Jerison.mp4

Information on the Event

Event Title : Harmonic analysis and geometric measure theory / Analyse harmonique et théorie géométrique de la mesure
Event Organizers : Bernicot, Frédéric ; Durand-Cartagena, Estibalitz ; Lemenant, Antoine ; Pajot, Hervé ; Rigot, Séverine
Dates : 02/10/2017 - 06/10/2017
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1685.html

Citation Data

DOI : 10.24350/CIRM.V.19226303
Cite this video as: Jerison, David (2017). Localization of eigenfunctions via an effective potential. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19226303
URI : http://dx.doi.org/10.24350/CIRM.V.19226303

See Also

Bibliography

  • Arnold, D.N., David, G., Jerison, D., Mayboroda, S., & Filoche, M. (2016). Effective confining potential of quantum states in disordered media. - https://arxiv.org/abs/1505.02684



Bookmarks Report an error