En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear Boltzmann equation and fractional diffusion

Bookmarks Report an error
Multi angle
Authors : Golse, François (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : (Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma \to +\infty$ and $1 − \alpha ∼ C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of
a kinetic model which is based on the harmonic extension definition of $\sqrt{−\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (“heavy tails”) or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273–280].

Keywords : linear Boltzmann equation; radiative transfer equation; diffusion approximation; fractional diffusion

MSC Codes :
35Q20 - Boltzmann equations
45K05 - Integro-partial differential equations
45M05 - Asymptotics
82C70 - Transport processes
85A25 - Radiative transfer (astronomy and astrophysics)
35R11 - Fractional partial differential equations

Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1862/Golse.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 19/12/2018
    Conference Date : 13/12/2018
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 01:06:51
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-12-13_Golse.mp4

Information on the Event

Event Title : Non standard diffusions in fluids, kinetic equations and probability / Diffusions non standards en mécanique des fluides, équations cinétiques et probabilités
Event Organizers : Imbert, Cyril ; Mouhot, Clément ; Tristani, Isabelle
Dates : 10/12/2018 - 14/12/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1862.html

Citation Data

DOI : 10.24350/CIRM.V.19483603
Cite this video as: Golse, François (2018). Linear Boltzmann equation and fractional diffusion. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19483603
URI : http://dx.doi.org/10.24350/CIRM.V.19483603

See Also

Bibliography

  • Bardos, C., Golse, F., & Moyano, I. (2018). Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11(4), 1011-1036 - http://dx.doi.org/10.3934/krm.2018039



Bookmarks Report an error