En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Beyond Bowen specification property - lecture 2

Bookmarks Report an error
Multi angle
Authors : Climenhaga, Vaughn (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to specification" using a decomposition of the space of finite-length orbit segments, and then survey various applications, including factors of beta-shifts, derived-from-Anosov diffeomorphisms, and geodesic flows in non-positive curvature and beyond.

Keywords : measures of maximal entropy; expansivity; specification

MSC Codes :
37B10 - Symbolic dynamics
37B40 - Topological entropy
37D35 - Thermodynamic formalism, variational principles, equilibrium states

Additional resources :
https://www.cirm-math.fr/RepOrga/1947/Notes/Climenhaga-2-notes.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 11/06/2019
    Conference Date : 15/05/2019
    Subseries : Research School
    arXiv category : Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:26
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-15_Climenhaga_Part2.mp4

Information on the Event

Event Title : Dynamique au-delà de l'hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity
Event Organizers : Bonatti, Christian ; Buzzi, Jérôme ; Crovisier, Sylvain ; Gan, Shaobo ; Pacifico, Maria José
Dates : 13/05/2019 - 24/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1947.html

Citation Data

DOI : 10.24350/CIRM.V.19525203
Cite this video as: Climenhaga, Vaughn (2019). Beyond Bowen specification property - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19525203
URI : http://dx.doi.org/10.24350/CIRM.V.19525203

See Also

Bibliography

  • Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. - https://doi.org/10.3934/jmd.2013.7.527

  • BUZZI, Jérôme, FISHER, Tom, SAMBARINO, Martín, et al. Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems. Ergodic theory and dynamical systems, 2012, vol. 32, no 1, p. 63-79. - https://doi.org/10.1017/S0143385710000854

  • BOWEN, Rufus. Entropy-expansive maps. Transactions of the American Mathematical Society, 1972, vol. 164, p. 323-331. - https://doi.org/10.2307/1995978

  • BOWEN, Rufus. Some systems with unique equilibrium states. Theory of computing systems, 1974, vol. 8, no 3, p. 193-202. - https://doi.org/10.1007/BF01762666

  • BONATTI, Christian et VIANA, Marcelo. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel Journal of Mathematics, 2000, vol. 115, no 1, p. 157-193. - https://doi.org/10.1007/BF02810585

  • CLIMENHAGA, Vaughn, FISHER, Todd, et THOMPSON, Daniel J. Unique equilibrium states for Bonatti–Viana diffeomorphisms. Nonlinearity, 2018, vol. 31, no 6, p. 2532. - https://doi.org/10.1088/1361-6544/aab1cd

  • CLIMENHAGA, Vaughn, FISHER, Todd, et THOMPSON, Daniel J. Equilibrium states for Mané diffeomorphisms. Ergodic Theory and Dynamical Systems, 2018, p. 1-23. - https://doi.org/10.1017/etds.2017.125

  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Intrinsic ergodicity via obstruction entropies. Ergodic Theory and Dynamical Systems, 2014, vol. 34, no 6, p. 1816-1831. - https://doi.org/10.1017/etds.2013.16

  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Advances in Mathematics, 2016, vol. 303, p. 745-799. - https://doi.org/10.1016/j.aim.2016.07.029

  • COWIESON, William et YOUNG, Lai-Sang. SRB measures as zero-noise limits. Ergodic Theory and dynamical systems, 2005, vol. 25, no 4, p. 1115-1138. - https://doi.org/10.1017/S0143385704000604

  • KATOK, Anatole. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publications Mathématiques de l'IHÉS, 1980, vol. 51, p. 137-173. - https://doi.org/10.1007/BF02684777

  • MAÑÉ, Ricardo. Contributions to the stability conjecture. Topology, 1978, vol. 17, no 4, p. 383-396. - https://doi.org/10.1016/0040-9383(78)90005-8

  • URES, Raúl. Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part. Proceedings of the American Mathematical Society, 2012, vol. 140, no 6, p. 1973-1985. - https://doi.org/10.1090/S0002-9939-2011-11040-2

  • WALTERS, Peter. An introduction to ergodic theory. Graduate Texts in Mathematics, 1982, vol. 79. -



Bookmarks Report an error