En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Multiple traveling waves of the Euler-Korteweg system

Bookmarks Report an error
Multi angle
Authors : Audiard, Corentin (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la Grillakis-Shatah-Strauss. This talk is devoted to the construction of multiple traveling waves, namely global solutions that converge as $t\rightarrow \infty $ to a profile made of several (stable) traveling waves. The waves constructed have both solitons and kinks. Multiple traveling waves play a peculiar role in the dynamics of dispersive equations, as they correspond to solutions that follow in some sense a purely nonlinear evolution.

Keywords : solitons; Euler-Korteweg; stability

MSC Codes :
35B35 - Stability of solutions of PDE
35Q35 - PDEs in connection with fluid mechanics
35Q53 - KdV-like (Korteweg-de Vries) equations
35Q31 - Euler equations
35C07 - Traveling wave solutions of PDE

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/10/2019
    Conference Date : 24/09/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:43:30
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-09-24_Audiard.mp4

Information on the Event

Event Title : Inhomogeneous Flows: Asymptotic Models and Interfaces Evolution / Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces
Event Organizers : Charve, Frédéric ; Danchin, Raphaël ; Haspot, Boris ; Monniaux, Sylvie
Dates : 23/09/2019 - 27/09/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1919.html

Citation Data

DOI : 10.24350/CIRM.V.19562603
Cite this video as: Audiard, Corentin (2019). Multiple traveling waves of the Euler-Korteweg system. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19562603
URI : http://dx.doi.org/10.24350/CIRM.V.19562603

See Also

Bibliography

  • C.Audiard, Existence of multi-traveling waves in capillary fluids, to appear Proc.Roy.Soc.Edinburgh. - https://arxiv.org/abs/1809.01454

  • S.Benzoni, R.Danchin, S.Descombes and D.Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interfaces free bound. 7 (2005), 371–414. - http://dx.doi.org/10.4171/IFB/130

  • M.Ming, F.Rousset, N.Tzvetkov, Multi-solitons and related solutions for the waterwaves system, SIAM J.Math.Anal. 47 (2015), 897-954 - https://doi.org/10.1137/140960220



Bookmarks Report an error