En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Rank optimality for the Burer-Monteiro factorization

Bookmarks Report an error
Multi angle
Authors : Waldspurger, Irène (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The Burer-Monteiro factorization is a classical heuristic used to speed up the solving of large scale semidefinite programs when the solution is expected to be low rank: One writes the solution as the product of thinner matrices, and optimizes over the (low-dimensional) factors instead of over the full matrix. Even though the factorized problem is non-convex, one observes that standard first-order algorithms can often solve it to global optimality. This has been rigorously proved by Boumal, Voroninski and Bandeira, but only under the assumption that the factorization rank is large enough, larger than what numerical experiments suggest. We will describe this result, and investigate its optimality. More specifically, we will show that, up to a minor improvement, it is optimal: without additional hypotheses on the semidefinite problem at hand, first-order algorithms can fail if the factorization rank is smaller than predicted by current theory.

Keywords : nonconvex optimization; phase retrieval; low-rank matrix recovery

MSC Codes :
42C40 - Wavelets and other special systems
90C22 - Semidefinite programming
90C26 - Nonconvex programming, quasiconvex programming

Additional resources :
https://www.cirm-math.fr/RepOrga/2133/Slides/10_03_waldspurger.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/04/2020
    Conference Date : 10/03/2020
    Subseries : Research talks
    arXiv category : Optimization and Control
    Mathematical Area(s) : Control Theory & Optimization
    Format : MP4 (.mp4) - HD
    Video Time : 00:40:11
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-03-10_Waldspurger.mp4

Information on the Event

Event Title : Optimization for Machine Learning / Optimisation pour l'apprentissage automatique
Event Organizers : Boyer, Claire ; d'Aspremont, Alexandre ; Gramfort, Alexandre ; Salmon, Joseph ; Villar, Soledad
Dates : 09/03/2020 - 13/03/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2133.html

Citation Data

DOI : 10.24350/CIRM.V.19623503
Cite this video as: Waldspurger, Irène (2020). Rank optimality for the Burer-Monteiro factorization. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19623503
URI : http://dx.doi.org/10.24350/CIRM.V.19623503

See Also

Bibliography

  • WALDSPURGER, Irène et WATERS, Alden. Rank optimality for the Burer-Monteiro factorization. arXiv preprint arXiv:1812.03046, 2018. - https://arxiv.org/abs/1812.03046



Imagette Video

Bookmarks Report an error