En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Rank optimality for the Burer-Monteiro factorization

Sélection Signaler une erreur
Multi angle
Auteurs : Waldspurger, Irène (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : The Burer-Monteiro factorization is a classical heuristic used to speed up the solving of large scale semidefinite programs when the solution is expected to be low rank: One writes the solution as the product of thinner matrices, and optimizes over the (low-dimensional) factors instead of over the full matrix. Even though the factorized problem is non-convex, one observes that standard first-order algorithms can often solve it to global optimality. This has been rigorously proved by Boumal, Voroninski and Bandeira, but only under the assumption that the factorization rank is large enough, larger than what numerical experiments suggest. We will describe this result, and investigate its optimality. More specifically, we will show that, up to a minor improvement, it is optimal: without additional hypotheses on the semidefinite problem at hand, first-order algorithms can fail if the factorization rank is smaller than predicted by current theory.

Mots-Clés : nonconvex optimization; phase retrieval; low-rank matrix recovery

Codes MSC :
42C40 - Wavelets and other special systems
90C22 - Semidefinite programming
90C26 - Nonconvex programming, quasiconvex programming

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2133/Slides/10_03_waldspurger.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 06/04/2020
    Date de Captation : 10/03/2020
    Sous Collection : Research talks
    Catégorie arXiv : Optimization and Control
    Domaine(s) : Théorie du Contrôle & Optimisation
    Format : MP4 (.mp4) - HD
    Durée : 00:40:11
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2020-03-10_Waldspurger.mp4

Informations sur la Rencontre

Nom de la Rencontre : Optimization for Machine Learning / Optimisation pour l'apprentissage automatique
Organisateurs de la Rencontre : Boyer, Claire ; d'Aspremont, Alexandre ; Gramfort, Alexandre ; Salmon, Joseph ; Villar, Soledad
Dates : 09/03/2020 - 13/03/2020
Année de la rencontre : 2020
URL de la Rencontre : https://conferences.cirm-math.fr/2133.html

Données de citation

DOI : 10.24350/CIRM.V.19623503
Citer cette vidéo: Waldspurger, Irène (2020). Rank optimality for the Burer-Monteiro factorization. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19623503
URI : http://dx.doi.org/10.24350/CIRM.V.19623503

Voir Aussi

Bibliographie

  • WALDSPURGER, Irène et WATERS, Alden. Rank optimality for the Burer-Monteiro factorization. arXiv preprint arXiv:1812.03046, 2018. - https://arxiv.org/abs/1812.03046



Imagette Video

Sélection Signaler une erreur